Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-4-6i\right)\left(6-4i\right)}{\left(6+4i\right)\left(6-4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 6-4i.
\frac{\left(-4-6i\right)\left(6-4i\right)}{6^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-4-6i\right)\left(6-4i\right)}{52}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-4\times 6-4\times \left(-4i\right)-6i\times 6-6\left(-4\right)i^{2}}{52}
Multiply complex numbers -4-6i and 6-4i like you multiply binomials.
\frac{-4\times 6-4\times \left(-4i\right)-6i\times 6-6\left(-4\right)\left(-1\right)}{52}
By definition, i^{2} is -1.
\frac{-24+16i-36i-24}{52}
Do the multiplications in -4\times 6-4\times \left(-4i\right)-6i\times 6-6\left(-4\right)\left(-1\right).
\frac{-24-24+\left(16-36\right)i}{52}
Combine the real and imaginary parts in -24+16i-36i-24.
\frac{-48-20i}{52}
Do the additions in -24-24+\left(16-36\right)i.
-\frac{12}{13}-\frac{5}{13}i
Divide -48-20i by 52 to get -\frac{12}{13}-\frac{5}{13}i.
Re(\frac{\left(-4-6i\right)\left(6-4i\right)}{\left(6+4i\right)\left(6-4i\right)})
Multiply both numerator and denominator of \frac{-4-6i}{6+4i} by the complex conjugate of the denominator, 6-4i.
Re(\frac{\left(-4-6i\right)\left(6-4i\right)}{6^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-4-6i\right)\left(6-4i\right)}{52})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-4\times 6-4\times \left(-4i\right)-6i\times 6-6\left(-4\right)i^{2}}{52})
Multiply complex numbers -4-6i and 6-4i like you multiply binomials.
Re(\frac{-4\times 6-4\times \left(-4i\right)-6i\times 6-6\left(-4\right)\left(-1\right)}{52})
By definition, i^{2} is -1.
Re(\frac{-24+16i-36i-24}{52})
Do the multiplications in -4\times 6-4\times \left(-4i\right)-6i\times 6-6\left(-4\right)\left(-1\right).
Re(\frac{-24-24+\left(16-36\right)i}{52})
Combine the real and imaginary parts in -24+16i-36i-24.
Re(\frac{-48-20i}{52})
Do the additions in -24-24+\left(16-36\right)i.
Re(-\frac{12}{13}-\frac{5}{13}i)
Divide -48-20i by 52 to get -\frac{12}{13}-\frac{5}{13}i.
-\frac{12}{13}
The real part of -\frac{12}{13}-\frac{5}{13}i is -\frac{12}{13}.