Evaluate
-\frac{z^{9}}{3m^{2}}
Expand
-\frac{z^{9}}{3m^{2}}
Share
Copied to clipboard
\frac{-\left(m^{-3}z^{4}\right)^{2}}{3m^{-4}\times \frac{1}{z}}
Cancel out 4 in both numerator and denominator.
\frac{-\left(m^{-3}\right)^{2}\left(z^{4}\right)^{2}}{3m^{-4}\times \frac{1}{z}}
Expand \left(m^{-3}z^{4}\right)^{2}.
\frac{-m^{-6}\left(z^{4}\right)^{2}}{3m^{-4}\times \frac{1}{z}}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\frac{-m^{-6}z^{8}}{3m^{-4}\times \frac{1}{z}}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{-m^{-6}z^{8}}{\frac{3}{z}m^{-4}}
Express 3\times \frac{1}{z} as a single fraction.
\frac{-m^{-6}z^{8}}{\frac{3m^{-4}}{z}}
Express \frac{3}{z}m^{-4} as a single fraction.
\frac{-m^{-6}z^{8}z}{3m^{-4}}
Divide -m^{-6}z^{8} by \frac{3m^{-4}}{z} by multiplying -m^{-6}z^{8} by the reciprocal of \frac{3m^{-4}}{z}.
\frac{-zz^{8}}{3m^{2}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{zz^{8}}{-3m^{2}}
Cancel out -1 in both numerator and denominator.
\frac{z^{9}}{-3m^{2}}
To multiply powers of the same base, add their exponents. Add 1 and 8 to get 9.
\frac{-\left(m^{-3}z^{4}\right)^{2}}{3m^{-4}\times \frac{1}{z}}
Cancel out 4 in both numerator and denominator.
\frac{-\left(m^{-3}\right)^{2}\left(z^{4}\right)^{2}}{3m^{-4}\times \frac{1}{z}}
Expand \left(m^{-3}z^{4}\right)^{2}.
\frac{-m^{-6}\left(z^{4}\right)^{2}}{3m^{-4}\times \frac{1}{z}}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\frac{-m^{-6}z^{8}}{3m^{-4}\times \frac{1}{z}}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{-m^{-6}z^{8}}{\frac{3}{z}m^{-4}}
Express 3\times \frac{1}{z} as a single fraction.
\frac{-m^{-6}z^{8}}{\frac{3m^{-4}}{z}}
Express \frac{3}{z}m^{-4} as a single fraction.
\frac{-m^{-6}z^{8}z}{3m^{-4}}
Divide -m^{-6}z^{8} by \frac{3m^{-4}}{z} by multiplying -m^{-6}z^{8} by the reciprocal of \frac{3m^{-4}}{z}.
\frac{-zz^{8}}{3m^{2}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{zz^{8}}{-3m^{2}}
Cancel out -1 in both numerator and denominator.
\frac{z^{9}}{-3m^{2}}
To multiply powers of the same base, add their exponents. Add 1 and 8 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}