Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-4\left(x-2\right)}{\left(x-2\right)\left(x-1\right)}+\frac{4\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}-\frac{4}{\left(x-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and x-2 is \left(x-2\right)\left(x-1\right). Multiply \frac{-4}{x-1} times \frac{x-2}{x-2}. Multiply \frac{4}{x-2} times \frac{x-1}{x-1}.
\frac{-4\left(x-2\right)+4\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}-\frac{4}{\left(x-2\right)^{2}}
Since \frac{-4\left(x-2\right)}{\left(x-2\right)\left(x-1\right)} and \frac{4\left(x-1\right)}{\left(x-2\right)\left(x-1\right)} have the same denominator, add them by adding their numerators.
\frac{-4x+8+4x-4}{\left(x-2\right)\left(x-1\right)}-\frac{4}{\left(x-2\right)^{2}}
Do the multiplications in -4\left(x-2\right)+4\left(x-1\right).
\frac{4}{\left(x-2\right)\left(x-1\right)}-\frac{4}{\left(x-2\right)^{2}}
Combine like terms in -4x+8+4x-4.
\frac{4\left(x-2\right)}{\left(x-1\right)\left(x-2\right)^{2}}-\frac{4\left(x-1\right)}{\left(x-1\right)\left(x-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x-1\right) and \left(x-2\right)^{2} is \left(x-1\right)\left(x-2\right)^{2}. Multiply \frac{4}{\left(x-2\right)\left(x-1\right)} times \frac{x-2}{x-2}. Multiply \frac{4}{\left(x-2\right)^{2}} times \frac{x-1}{x-1}.
\frac{4\left(x-2\right)-4\left(x-1\right)}{\left(x-1\right)\left(x-2\right)^{2}}
Since \frac{4\left(x-2\right)}{\left(x-1\right)\left(x-2\right)^{2}} and \frac{4\left(x-1\right)}{\left(x-1\right)\left(x-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{4x-8-4x+4}{\left(x-1\right)\left(x-2\right)^{2}}
Do the multiplications in 4\left(x-2\right)-4\left(x-1\right).
\frac{-4}{\left(x-1\right)\left(x-2\right)^{2}}
Combine like terms in 4x-8-4x+4.
\frac{-4}{x^{3}-5x^{2}+8x-4}
Expand \left(x-1\right)\left(x-2\right)^{2}.
\frac{-4\left(x-2\right)}{\left(x-2\right)\left(x-1\right)}+\frac{4\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}-\frac{4}{\left(x-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and x-2 is \left(x-2\right)\left(x-1\right). Multiply \frac{-4}{x-1} times \frac{x-2}{x-2}. Multiply \frac{4}{x-2} times \frac{x-1}{x-1}.
\frac{-4\left(x-2\right)+4\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}-\frac{4}{\left(x-2\right)^{2}}
Since \frac{-4\left(x-2\right)}{\left(x-2\right)\left(x-1\right)} and \frac{4\left(x-1\right)}{\left(x-2\right)\left(x-1\right)} have the same denominator, add them by adding their numerators.
\frac{-4x+8+4x-4}{\left(x-2\right)\left(x-1\right)}-\frac{4}{\left(x-2\right)^{2}}
Do the multiplications in -4\left(x-2\right)+4\left(x-1\right).
\frac{4}{\left(x-2\right)\left(x-1\right)}-\frac{4}{\left(x-2\right)^{2}}
Combine like terms in -4x+8+4x-4.
\frac{4\left(x-2\right)}{\left(x-1\right)\left(x-2\right)^{2}}-\frac{4\left(x-1\right)}{\left(x-1\right)\left(x-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x-1\right) and \left(x-2\right)^{2} is \left(x-1\right)\left(x-2\right)^{2}. Multiply \frac{4}{\left(x-2\right)\left(x-1\right)} times \frac{x-2}{x-2}. Multiply \frac{4}{\left(x-2\right)^{2}} times \frac{x-1}{x-1}.
\frac{4\left(x-2\right)-4\left(x-1\right)}{\left(x-1\right)\left(x-2\right)^{2}}
Since \frac{4\left(x-2\right)}{\left(x-1\right)\left(x-2\right)^{2}} and \frac{4\left(x-1\right)}{\left(x-1\right)\left(x-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{4x-8-4x+4}{\left(x-1\right)\left(x-2\right)^{2}}
Do the multiplications in 4\left(x-2\right)-4\left(x-1\right).
\frac{-4}{\left(x-1\right)\left(x-2\right)^{2}}
Combine like terms in 4x-8-4x+4.
\frac{-4}{x^{3}-5x^{2}+8x-4}
Expand \left(x-1\right)\left(x-2\right)^{2}.