Solve for m
m = -\frac{11}{5} = -2\frac{1}{5} = -2.2
Share
Copied to clipboard
\left(m+3\right)\left(-4\right)=m-1
Variable m cannot be equal to any of the values -3,1 since division by zero is not defined. Multiply both sides of the equation by \left(m-1\right)\left(m+3\right), the least common multiple of m-1,m+3.
-4m-12=m-1
Use the distributive property to multiply m+3 by -4.
-4m-12-m=-1
Subtract m from both sides.
-5m-12=-1
Combine -4m and -m to get -5m.
-5m=-1+12
Add 12 to both sides.
-5m=11
Add -1 and 12 to get 11.
m=\frac{11}{-5}
Divide both sides by -5.
m=-\frac{11}{5}
Fraction \frac{11}{-5} can be rewritten as -\frac{11}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}