Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{-4\left(7-\sqrt{3}\right)}{\left(7+\sqrt{3}\right)\left(7-\sqrt{3}\right)}
Rationalize the denominator of \frac{-4}{7+\sqrt{3}} by multiplying numerator and denominator by 7-\sqrt{3}.
\frac{-4\left(7-\sqrt{3}\right)}{7^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(7+\sqrt{3}\right)\left(7-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-4\left(7-\sqrt{3}\right)}{49-3}
Square 7. Square \sqrt{3}.
\frac{-4\left(7-\sqrt{3}\right)}{46}
Subtract 3 from 49 to get 46.
-\frac{2}{23}\left(7-\sqrt{3}\right)
Divide -4\left(7-\sqrt{3}\right) by 46 to get -\frac{2}{23}\left(7-\sqrt{3}\right).
-\frac{2}{23}\times 7-\frac{2}{23}\left(-1\right)\sqrt{3}
Use the distributive property to multiply -\frac{2}{23} by 7-\sqrt{3}.
\frac{-2\times 7}{23}-\frac{2}{23}\left(-1\right)\sqrt{3}
Express -\frac{2}{23}\times 7 as a single fraction.
\frac{-14}{23}-\frac{2}{23}\left(-1\right)\sqrt{3}
Multiply -2 and 7 to get -14.
-\frac{14}{23}-\frac{2}{23}\left(-1\right)\sqrt{3}
Fraction \frac{-14}{23} can be rewritten as -\frac{14}{23} by extracting the negative sign.
-\frac{14}{23}+\frac{2}{23}\sqrt{3}
Multiply -\frac{2}{23} and -1 to get \frac{2}{23}.