\frac { - 4 } { 5 } ( y - 10 \frac { 1 } { 15 } y
Evaluate
\frac{544y}{75}
Expand
\frac{544y}{75}
Graph
Share
Copied to clipboard
-\frac{4}{5}\left(y-\frac{10\times 15+1}{15}y\right)
Fraction \frac{-4}{5} can be rewritten as -\frac{4}{5} by extracting the negative sign.
-\frac{4}{5}\left(y-\frac{150+1}{15}y\right)
Multiply 10 and 15 to get 150.
-\frac{4}{5}\left(y-\frac{151}{15}y\right)
Add 150 and 1 to get 151.
-\frac{4}{5}\left(-\frac{136}{15}\right)y
Combine y and -\frac{151}{15}y to get -\frac{136}{15}y.
\frac{-4\left(-136\right)}{5\times 15}y
Multiply -\frac{4}{5} times -\frac{136}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{544}{75}y
Do the multiplications in the fraction \frac{-4\left(-136\right)}{5\times 15}.
-\frac{4}{5}\left(y-\frac{10\times 15+1}{15}y\right)
Fraction \frac{-4}{5} can be rewritten as -\frac{4}{5} by extracting the negative sign.
-\frac{4}{5}\left(y-\frac{150+1}{15}y\right)
Multiply 10 and 15 to get 150.
-\frac{4}{5}\left(y-\frac{151}{15}y\right)
Add 150 and 1 to get 151.
-\frac{4}{5}\left(-\frac{136}{15}\right)y
Combine y and -\frac{151}{15}y to get -\frac{136}{15}y.
\frac{-4\left(-136\right)}{5\times 15}y
Multiply -\frac{4}{5} times -\frac{136}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{544}{75}y
Do the multiplications in the fraction \frac{-4\left(-136\right)}{5\times 15}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}