Evaluate
-\frac{36}{149}\approx -0.241610738
Factor
-\frac{36}{149} = -0.24161073825503357
Share
Copied to clipboard
\frac{-4}{12\times \frac{4}{3}+\frac{5}{12}\times \frac{4}{3}}
Divide 12 by \frac{3}{4} by multiplying 12 by the reciprocal of \frac{3}{4}.
\frac{-4}{\frac{12\times 4}{3}+\frac{5}{12}\times \frac{4}{3}}
Express 12\times \frac{4}{3} as a single fraction.
\frac{-4}{\frac{48}{3}+\frac{5}{12}\times \frac{4}{3}}
Multiply 12 and 4 to get 48.
\frac{-4}{16+\frac{5}{12}\times \frac{4}{3}}
Divide 48 by 3 to get 16.
\frac{-4}{16+\frac{5\times 4}{12\times 3}}
Multiply \frac{5}{12} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-4}{16+\frac{20}{36}}
Do the multiplications in the fraction \frac{5\times 4}{12\times 3}.
\frac{-4}{16+\frac{5}{9}}
Reduce the fraction \frac{20}{36} to lowest terms by extracting and canceling out 4.
\frac{-4}{\frac{144}{9}+\frac{5}{9}}
Convert 16 to fraction \frac{144}{9}.
\frac{-4}{\frac{144+5}{9}}
Since \frac{144}{9} and \frac{5}{9} have the same denominator, add them by adding their numerators.
\frac{-4}{\frac{149}{9}}
Add 144 and 5 to get 149.
-4\times \frac{9}{149}
Divide -4 by \frac{149}{9} by multiplying -4 by the reciprocal of \frac{149}{9}.
\frac{-4\times 9}{149}
Express -4\times \frac{9}{149} as a single fraction.
\frac{-36}{149}
Multiply -4 and 9 to get -36.
-\frac{36}{149}
Fraction \frac{-36}{149} can be rewritten as -\frac{36}{149} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}