Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-4}{\left(x+3\right)^{2}}+\frac{-10}{3\left(x+3\right)}+\frac{3}{x+2}+\frac{\frac{1}{3}}{x}
Express \frac{-\frac{10}{3}}{x+3} as a single fraction.
\frac{-4}{\left(x+3\right)^{2}}+\frac{-10}{3\left(x+3\right)}+\frac{3}{x+2}+\frac{1}{3x}
Express \frac{\frac{1}{3}}{x} as a single fraction.
\frac{-4\times 3}{3\left(x+3\right)^{2}}+\frac{-10\left(x+3\right)}{3\left(x+3\right)^{2}}+\frac{3}{x+2}+\frac{1}{3x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+3\right)^{2} and 3\left(x+3\right) is 3\left(x+3\right)^{2}. Multiply \frac{-4}{\left(x+3\right)^{2}} times \frac{3}{3}. Multiply \frac{-10}{3\left(x+3\right)} times \frac{x+3}{x+3}.
\frac{-4\times 3-10\left(x+3\right)}{3\left(x+3\right)^{2}}+\frac{3}{x+2}+\frac{1}{3x}
Since \frac{-4\times 3}{3\left(x+3\right)^{2}} and \frac{-10\left(x+3\right)}{3\left(x+3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-12-10x-30}{3\left(x+3\right)^{2}}+\frac{3}{x+2}+\frac{1}{3x}
Do the multiplications in -4\times 3-10\left(x+3\right).
\frac{-42-10x}{3\left(x+3\right)^{2}}+\frac{3}{x+2}+\frac{1}{3x}
Combine like terms in -12-10x-30.
\frac{\left(-42-10x\right)\left(x+2\right)}{3\left(x+2\right)\left(x+3\right)^{2}}+\frac{3\times 3\left(x+3\right)^{2}}{3\left(x+2\right)\left(x+3\right)^{2}}+\frac{1}{3x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x+3\right)^{2} and x+2 is 3\left(x+2\right)\left(x+3\right)^{2}. Multiply \frac{-42-10x}{3\left(x+3\right)^{2}} times \frac{x+2}{x+2}. Multiply \frac{3}{x+2} times \frac{3\left(x+3\right)^{2}}{3\left(x+3\right)^{2}}.
\frac{\left(-42-10x\right)\left(x+2\right)+3\times 3\left(x+3\right)^{2}}{3\left(x+2\right)\left(x+3\right)^{2}}+\frac{1}{3x}
Since \frac{\left(-42-10x\right)\left(x+2\right)}{3\left(x+2\right)\left(x+3\right)^{2}} and \frac{3\times 3\left(x+3\right)^{2}}{3\left(x+2\right)\left(x+3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-42x-84-10x^{2}-20x+9x^{2}+54x+81}{3\left(x+2\right)\left(x+3\right)^{2}}+\frac{1}{3x}
Do the multiplications in \left(-42-10x\right)\left(x+2\right)+3\times 3\left(x+3\right)^{2}.
\frac{-8x-3-x^{2}}{3\left(x+2\right)\left(x+3\right)^{2}}+\frac{1}{3x}
Combine like terms in -42x-84-10x^{2}-20x+9x^{2}+54x+81.
\frac{\left(-8x-3-x^{2}\right)x}{3x\left(x+2\right)\left(x+3\right)^{2}}+\frac{\left(x+2\right)\left(x+3\right)^{2}}{3x\left(x+2\right)\left(x+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x+2\right)\left(x+3\right)^{2} and 3x is 3x\left(x+2\right)\left(x+3\right)^{2}. Multiply \frac{-8x-3-x^{2}}{3\left(x+2\right)\left(x+3\right)^{2}} times \frac{x}{x}. Multiply \frac{1}{3x} times \frac{\left(x+2\right)\left(x+3\right)^{2}}{\left(x+2\right)\left(x+3\right)^{2}}.
\frac{\left(-8x-3-x^{2}\right)x+\left(x+2\right)\left(x+3\right)^{2}}{3x\left(x+2\right)\left(x+3\right)^{2}}
Since \frac{\left(-8x-3-x^{2}\right)x}{3x\left(x+2\right)\left(x+3\right)^{2}} and \frac{\left(x+2\right)\left(x+3\right)^{2}}{3x\left(x+2\right)\left(x+3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-8x^{2}-3x-x^{3}+x^{3}+6x^{2}+9x+2x^{2}+12x+18}{3x\left(x+2\right)\left(x+3\right)^{2}}
Do the multiplications in \left(-8x-3-x^{2}\right)x+\left(x+2\right)\left(x+3\right)^{2}.
\frac{18x+18}{3x\left(x+2\right)\left(x+3\right)^{2}}
Combine like terms in -8x^{2}-3x-x^{3}+x^{3}+6x^{2}+9x+2x^{2}+12x+18.
\frac{18\left(x+1\right)}{3x\left(x+2\right)\left(x+3\right)^{2}}
Factor the expressions that are not already factored in \frac{18x+18}{3x\left(x+2\right)\left(x+3\right)^{2}}.
\frac{6\left(x+1\right)}{x\left(x+2\right)\left(x+3\right)^{2}}
Cancel out 3 in both numerator and denominator.
\frac{6\left(x+1\right)}{x^{4}+8x^{3}+21x^{2}+18x}
Expand x\left(x+2\right)\left(x+3\right)^{2}.
\frac{6x+6}{x^{4}+8x^{3}+21x^{2}+18x}
Use the distributive property to multiply 6 by x+1.
\frac{-4}{\left(x+3\right)^{2}}+\frac{-10}{3\left(x+3\right)}+\frac{3}{x+2}+\frac{\frac{1}{3}}{x}
Express \frac{-\frac{10}{3}}{x+3} as a single fraction.
\frac{-4}{\left(x+3\right)^{2}}+\frac{-10}{3\left(x+3\right)}+\frac{3}{x+2}+\frac{1}{3x}
Express \frac{\frac{1}{3}}{x} as a single fraction.
\frac{-4\times 3}{3\left(x+3\right)^{2}}+\frac{-10\left(x+3\right)}{3\left(x+3\right)^{2}}+\frac{3}{x+2}+\frac{1}{3x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+3\right)^{2} and 3\left(x+3\right) is 3\left(x+3\right)^{2}. Multiply \frac{-4}{\left(x+3\right)^{2}} times \frac{3}{3}. Multiply \frac{-10}{3\left(x+3\right)} times \frac{x+3}{x+3}.
\frac{-4\times 3-10\left(x+3\right)}{3\left(x+3\right)^{2}}+\frac{3}{x+2}+\frac{1}{3x}
Since \frac{-4\times 3}{3\left(x+3\right)^{2}} and \frac{-10\left(x+3\right)}{3\left(x+3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-12-10x-30}{3\left(x+3\right)^{2}}+\frac{3}{x+2}+\frac{1}{3x}
Do the multiplications in -4\times 3-10\left(x+3\right).
\frac{-42-10x}{3\left(x+3\right)^{2}}+\frac{3}{x+2}+\frac{1}{3x}
Combine like terms in -12-10x-30.
\frac{\left(-42-10x\right)\left(x+2\right)}{3\left(x+2\right)\left(x+3\right)^{2}}+\frac{3\times 3\left(x+3\right)^{2}}{3\left(x+2\right)\left(x+3\right)^{2}}+\frac{1}{3x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x+3\right)^{2} and x+2 is 3\left(x+2\right)\left(x+3\right)^{2}. Multiply \frac{-42-10x}{3\left(x+3\right)^{2}} times \frac{x+2}{x+2}. Multiply \frac{3}{x+2} times \frac{3\left(x+3\right)^{2}}{3\left(x+3\right)^{2}}.
\frac{\left(-42-10x\right)\left(x+2\right)+3\times 3\left(x+3\right)^{2}}{3\left(x+2\right)\left(x+3\right)^{2}}+\frac{1}{3x}
Since \frac{\left(-42-10x\right)\left(x+2\right)}{3\left(x+2\right)\left(x+3\right)^{2}} and \frac{3\times 3\left(x+3\right)^{2}}{3\left(x+2\right)\left(x+3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-42x-84-10x^{2}-20x+9x^{2}+54x+81}{3\left(x+2\right)\left(x+3\right)^{2}}+\frac{1}{3x}
Do the multiplications in \left(-42-10x\right)\left(x+2\right)+3\times 3\left(x+3\right)^{2}.
\frac{-8x-3-x^{2}}{3\left(x+2\right)\left(x+3\right)^{2}}+\frac{1}{3x}
Combine like terms in -42x-84-10x^{2}-20x+9x^{2}+54x+81.
\frac{\left(-8x-3-x^{2}\right)x}{3x\left(x+2\right)\left(x+3\right)^{2}}+\frac{\left(x+2\right)\left(x+3\right)^{2}}{3x\left(x+2\right)\left(x+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x+2\right)\left(x+3\right)^{2} and 3x is 3x\left(x+2\right)\left(x+3\right)^{2}. Multiply \frac{-8x-3-x^{2}}{3\left(x+2\right)\left(x+3\right)^{2}} times \frac{x}{x}. Multiply \frac{1}{3x} times \frac{\left(x+2\right)\left(x+3\right)^{2}}{\left(x+2\right)\left(x+3\right)^{2}}.
\frac{\left(-8x-3-x^{2}\right)x+\left(x+2\right)\left(x+3\right)^{2}}{3x\left(x+2\right)\left(x+3\right)^{2}}
Since \frac{\left(-8x-3-x^{2}\right)x}{3x\left(x+2\right)\left(x+3\right)^{2}} and \frac{\left(x+2\right)\left(x+3\right)^{2}}{3x\left(x+2\right)\left(x+3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-8x^{2}-3x-x^{3}+x^{3}+6x^{2}+9x+2x^{2}+12x+18}{3x\left(x+2\right)\left(x+3\right)^{2}}
Do the multiplications in \left(-8x-3-x^{2}\right)x+\left(x+2\right)\left(x+3\right)^{2}.
\frac{18x+18}{3x\left(x+2\right)\left(x+3\right)^{2}}
Combine like terms in -8x^{2}-3x-x^{3}+x^{3}+6x^{2}+9x+2x^{2}+12x+18.
\frac{18\left(x+1\right)}{3x\left(x+2\right)\left(x+3\right)^{2}}
Factor the expressions that are not already factored in \frac{18x+18}{3x\left(x+2\right)\left(x+3\right)^{2}}.
\frac{6\left(x+1\right)}{x\left(x+2\right)\left(x+3\right)^{2}}
Cancel out 3 in both numerator and denominator.
\frac{6\left(x+1\right)}{x^{4}+8x^{3}+21x^{2}+18x}
Expand x\left(x+2\right)\left(x+3\right)^{2}.
\frac{6x+6}{x^{4}+8x^{3}+21x^{2}+18x}
Use the distributive property to multiply 6 by x+1.