Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-4+4i\right)\left(4+6i\right)}{\left(4-6i\right)\left(4+6i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4+6i.
\frac{\left(-4+4i\right)\left(4+6i\right)}{4^{2}-6^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-4+4i\right)\left(4+6i\right)}{52}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-4\times 4-4\times \left(6i\right)+4i\times 4+4\times 6i^{2}}{52}
Multiply complex numbers -4+4i and 4+6i like you multiply binomials.
\frac{-4\times 4-4\times \left(6i\right)+4i\times 4+4\times 6\left(-1\right)}{52}
By definition, i^{2} is -1.
\frac{-16-24i+16i-24}{52}
Do the multiplications in -4\times 4-4\times \left(6i\right)+4i\times 4+4\times 6\left(-1\right).
\frac{-16-24+\left(-24+16\right)i}{52}
Combine the real and imaginary parts in -16-24i+16i-24.
\frac{-40-8i}{52}
Do the additions in -16-24+\left(-24+16\right)i.
-\frac{10}{13}-\frac{2}{13}i
Divide -40-8i by 52 to get -\frac{10}{13}-\frac{2}{13}i.
Re(\frac{\left(-4+4i\right)\left(4+6i\right)}{\left(4-6i\right)\left(4+6i\right)})
Multiply both numerator and denominator of \frac{-4+4i}{4-6i} by the complex conjugate of the denominator, 4+6i.
Re(\frac{\left(-4+4i\right)\left(4+6i\right)}{4^{2}-6^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-4+4i\right)\left(4+6i\right)}{52})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-4\times 4-4\times \left(6i\right)+4i\times 4+4\times 6i^{2}}{52})
Multiply complex numbers -4+4i and 4+6i like you multiply binomials.
Re(\frac{-4\times 4-4\times \left(6i\right)+4i\times 4+4\times 6\left(-1\right)}{52})
By definition, i^{2} is -1.
Re(\frac{-16-24i+16i-24}{52})
Do the multiplications in -4\times 4-4\times \left(6i\right)+4i\times 4+4\times 6\left(-1\right).
Re(\frac{-16-24+\left(-24+16\right)i}{52})
Combine the real and imaginary parts in -16-24i+16i-24.
Re(\frac{-40-8i}{52})
Do the additions in -16-24+\left(-24+16\right)i.
Re(-\frac{10}{13}-\frac{2}{13}i)
Divide -40-8i by 52 to get -\frac{10}{13}-\frac{2}{13}i.
-\frac{10}{13}
The real part of -\frac{10}{13}-\frac{2}{13}i is -\frac{10}{13}.