Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-4+3i\right)\left(-10-7i\right)}{\left(-10+7i\right)\left(-10-7i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -10-7i.
\frac{\left(-4+3i\right)\left(-10-7i\right)}{\left(-10\right)^{2}-7^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-4+3i\right)\left(-10-7i\right)}{149}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-4\left(-10\right)-4\times \left(-7i\right)+3i\left(-10\right)+3\left(-7\right)i^{2}}{149}
Multiply complex numbers -4+3i and -10-7i like you multiply binomials.
\frac{-4\left(-10\right)-4\times \left(-7i\right)+3i\left(-10\right)+3\left(-7\right)\left(-1\right)}{149}
By definition, i^{2} is -1.
\frac{40+28i-30i+21}{149}
Do the multiplications in -4\left(-10\right)-4\times \left(-7i\right)+3i\left(-10\right)+3\left(-7\right)\left(-1\right).
\frac{40+21+\left(28-30\right)i}{149}
Combine the real and imaginary parts in 40+28i-30i+21.
\frac{61-2i}{149}
Do the additions in 40+21+\left(28-30\right)i.
\frac{61}{149}-\frac{2}{149}i
Divide 61-2i by 149 to get \frac{61}{149}-\frac{2}{149}i.
Re(\frac{\left(-4+3i\right)\left(-10-7i\right)}{\left(-10+7i\right)\left(-10-7i\right)})
Multiply both numerator and denominator of \frac{-4+3i}{-10+7i} by the complex conjugate of the denominator, -10-7i.
Re(\frac{\left(-4+3i\right)\left(-10-7i\right)}{\left(-10\right)^{2}-7^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-4+3i\right)\left(-10-7i\right)}{149})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-4\left(-10\right)-4\times \left(-7i\right)+3i\left(-10\right)+3\left(-7\right)i^{2}}{149})
Multiply complex numbers -4+3i and -10-7i like you multiply binomials.
Re(\frac{-4\left(-10\right)-4\times \left(-7i\right)+3i\left(-10\right)+3\left(-7\right)\left(-1\right)}{149})
By definition, i^{2} is -1.
Re(\frac{40+28i-30i+21}{149})
Do the multiplications in -4\left(-10\right)-4\times \left(-7i\right)+3i\left(-10\right)+3\left(-7\right)\left(-1\right).
Re(\frac{40+21+\left(28-30\right)i}{149})
Combine the real and imaginary parts in 40+28i-30i+21.
Re(\frac{61-2i}{149})
Do the additions in 40+21+\left(28-30\right)i.
Re(\frac{61}{149}-\frac{2}{149}i)
Divide 61-2i by 149 to get \frac{61}{149}-\frac{2}{149}i.
\frac{61}{149}
The real part of \frac{61}{149}-\frac{2}{149}i is \frac{61}{149}.