Solve for m
m = \frac{17}{3} = 5\frac{2}{3} \approx 5.666666667
Share
Copied to clipboard
-35=5\left(-3m+10\right)
Variable m cannot be equal to \frac{10}{3} since division by zero is not defined. Multiply both sides of the equation by -3m+10.
-35=-15m+50
Use the distributive property to multiply 5 by -3m+10.
-15m+50=-35
Swap sides so that all variable terms are on the left hand side.
-15m=-35-50
Subtract 50 from both sides.
-15m=-85
Subtract 50 from -35 to get -85.
m=\frac{-85}{-15}
Divide both sides by -15.
m=\frac{17}{3}
Reduce the fraction \frac{-85}{-15} to lowest terms by extracting and canceling out -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}