Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-30i\left(80+30i\right)}{\left(80-30i\right)\left(80+30i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 80+30i.
\frac{-30i\left(80+30i\right)}{80^{2}-30^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-30i\left(80+30i\right)}{7300}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-30i\times 80-30\times 30i^{2}}{7300}
Multiply -30i times 80+30i.
\frac{-30i\times 80-30\times 30\left(-1\right)}{7300}
By definition, i^{2} is -1.
\frac{900-2400i}{7300}
Do the multiplications in -30i\times 80-30\times 30\left(-1\right). Reorder the terms.
\frac{9}{73}-\frac{24}{73}i
Divide 900-2400i by 7300 to get \frac{9}{73}-\frac{24}{73}i.
Re(\frac{-30i\left(80+30i\right)}{\left(80-30i\right)\left(80+30i\right)})
Multiply both numerator and denominator of \frac{-30i}{80-30i} by the complex conjugate of the denominator, 80+30i.
Re(\frac{-30i\left(80+30i\right)}{80^{2}-30^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{-30i\left(80+30i\right)}{7300})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-30i\times 80-30\times 30i^{2}}{7300})
Multiply -30i times 80+30i.
Re(\frac{-30i\times 80-30\times 30\left(-1\right)}{7300})
By definition, i^{2} is -1.
Re(\frac{900-2400i}{7300})
Do the multiplications in -30i\times 80-30\times 30\left(-1\right). Reorder the terms.
Re(\frac{9}{73}-\frac{24}{73}i)
Divide 900-2400i by 7300 to get \frac{9}{73}-\frac{24}{73}i.
\frac{9}{73}
The real part of \frac{9}{73}-\frac{24}{73}i is \frac{9}{73}.