Evaluate
\frac{9}{73}-\frac{24}{73}i\approx 0.123287671-0.328767123i
Real Part
\frac{9}{73} = 0.1232876712328767
Share
Copied to clipboard
\frac{-30i\left(80+30i\right)}{\left(80-30i\right)\left(80+30i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 80+30i.
\frac{-30i\left(80+30i\right)}{80^{2}-30^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-30i\left(80+30i\right)}{7300}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-30i\times 80-30\times 30i^{2}}{7300}
Multiply -30i times 80+30i.
\frac{-30i\times 80-30\times 30\left(-1\right)}{7300}
By definition, i^{2} is -1.
\frac{900-2400i}{7300}
Do the multiplications in -30i\times 80-30\times 30\left(-1\right). Reorder the terms.
\frac{9}{73}-\frac{24}{73}i
Divide 900-2400i by 7300 to get \frac{9}{73}-\frac{24}{73}i.
Re(\frac{-30i\left(80+30i\right)}{\left(80-30i\right)\left(80+30i\right)})
Multiply both numerator and denominator of \frac{-30i}{80-30i} by the complex conjugate of the denominator, 80+30i.
Re(\frac{-30i\left(80+30i\right)}{80^{2}-30^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{-30i\left(80+30i\right)}{7300})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-30i\times 80-30\times 30i^{2}}{7300})
Multiply -30i times 80+30i.
Re(\frac{-30i\times 80-30\times 30\left(-1\right)}{7300})
By definition, i^{2} is -1.
Re(\frac{900-2400i}{7300})
Do the multiplications in -30i\times 80-30\times 30\left(-1\right). Reorder the terms.
Re(\frac{9}{73}-\frac{24}{73}i)
Divide 900-2400i by 7300 to get \frac{9}{73}-\frac{24}{73}i.
\frac{9}{73}
The real part of \frac{9}{73}-\frac{24}{73}i is \frac{9}{73}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}