Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-3y^{1}\right)^{1}\times \frac{1}{-4y^{2}}
Use the rules of exponents to simplify the expression.
\left(-3\right)^{1}\left(y^{1}\right)^{1}\times \frac{1}{-4}\times \frac{1}{y^{2}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(-3\right)^{1}\times \frac{1}{-4}\left(y^{1}\right)^{1}\times \frac{1}{y^{2}}
Use the Commutative Property of Multiplication.
\left(-3\right)^{1}\times \frac{1}{-4}y^{1}y^{2\left(-1\right)}
To raise a power to another power, multiply the exponents.
\left(-3\right)^{1}\times \frac{1}{-4}y^{1}y^{-2}
Multiply 2 times -1.
\left(-3\right)^{1}\times \frac{1}{-4}y^{1-2}
To multiply powers of the same base, add their exponents.
\left(-3\right)^{1}\times \frac{1}{-4}\times \frac{1}{y}
Add the exponents 1 and -2.
-3\times \frac{1}{-4}\times \frac{1}{y}
Raise -3 to the power 1.
-3\left(-\frac{1}{4}\right)\times \frac{1}{y}
Raise -4 to the power -1.
\frac{3}{4}\times \frac{1}{y}
Multiply -3 times -\frac{1}{4}.
\frac{\left(-3\right)^{1}y^{1}}{\left(-4\right)^{1}y^{2}}
Use the rules of exponents to simplify the expression.
\frac{\left(-3\right)^{1}y^{1-2}}{\left(-4\right)^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(-3\right)^{1}\times \frac{1}{y}}{\left(-4\right)^{1}}
Subtract 2 from 1.
\frac{3}{4}\times \frac{1}{y}
Divide -3 by -4.
\frac{\mathrm{d}}{\mathrm{d}y}(\left(-\frac{3}{-4}\right)y^{1-2})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3}{4}\times \frac{1}{y})
Do the arithmetic.
-\frac{3}{4}y^{-1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-\frac{3}{4}y^{-2}
Do the arithmetic.