Solve for m
m=19
Share
Copied to clipboard
3\left(-3\right)=5+3\left(m-5\right)\left(-\frac{1}{3}\right)
Variable m cannot be equal to 5 since division by zero is not defined. Multiply both sides of the equation by 3\left(m-5\right), the least common multiple of m-5,3m-15,3.
-9=5+3\left(m-5\right)\left(-\frac{1}{3}\right)
Multiply 3 and -3 to get -9.
-9=5-\left(m-5\right)
Multiply 3 and -\frac{1}{3} to get -1.
-9=5-m+5
To find the opposite of m-5, find the opposite of each term.
-9=10-m
Add 5 and 5 to get 10.
10-m=-9
Swap sides so that all variable terms are on the left hand side.
-m=-9-10
Subtract 10 from both sides.
-m=-19
Subtract 10 from -9 to get -19.
m=19
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}