Solve for y
y=-\frac{4}{51}\approx -0.078431373
Graph
Share
Copied to clipboard
-\frac{3}{5}+\frac{2}{3}=-\frac{5}{4}y+\frac{2}{5}y
Fraction \frac{-3}{5} can be rewritten as -\frac{3}{5} by extracting the negative sign.
-\frac{9}{15}+\frac{10}{15}=-\frac{5}{4}y+\frac{2}{5}y
Least common multiple of 5 and 3 is 15. Convert -\frac{3}{5} and \frac{2}{3} to fractions with denominator 15.
\frac{-9+10}{15}=-\frac{5}{4}y+\frac{2}{5}y
Since -\frac{9}{15} and \frac{10}{15} have the same denominator, add them by adding their numerators.
\frac{1}{15}=-\frac{5}{4}y+\frac{2}{5}y
Add -9 and 10 to get 1.
\frac{1}{15}=-\frac{17}{20}y
Combine -\frac{5}{4}y and \frac{2}{5}y to get -\frac{17}{20}y.
-\frac{17}{20}y=\frac{1}{15}
Swap sides so that all variable terms are on the left hand side.
y=\frac{1}{15}\left(-\frac{20}{17}\right)
Multiply both sides by -\frac{20}{17}, the reciprocal of -\frac{17}{20}.
y=\frac{1\left(-20\right)}{15\times 17}
Multiply \frac{1}{15} times -\frac{20}{17} by multiplying numerator times numerator and denominator times denominator.
y=\frac{-20}{255}
Do the multiplications in the fraction \frac{1\left(-20\right)}{15\times 17}.
y=-\frac{4}{51}
Reduce the fraction \frac{-20}{255} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}