Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{-3\left(\sqrt{2}-\sqrt{11}\right)}{\left(\sqrt{2}+\sqrt{11}\right)\left(\sqrt{2}-\sqrt{11}\right)}
Rationalize the denominator of \frac{-3}{\sqrt{2}+\sqrt{11}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{11}.
\frac{-3\left(\sqrt{2}-\sqrt{11}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{11}\right)^{2}}
Consider \left(\sqrt{2}+\sqrt{11}\right)\left(\sqrt{2}-\sqrt{11}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-3\left(\sqrt{2}-\sqrt{11}\right)}{2-11}
Square \sqrt{2}. Square \sqrt{11}.
\frac{-3\left(\sqrt{2}-\sqrt{11}\right)}{-9}
Subtract 11 from 2 to get -9.
\frac{1}{3}\left(\sqrt{2}-\sqrt{11}\right)
Divide -3\left(\sqrt{2}-\sqrt{11}\right) by -9 to get \frac{1}{3}\left(\sqrt{2}-\sqrt{11}\right).
\frac{1}{3}\sqrt{2}+\frac{1}{3}\left(-1\right)\sqrt{11}
Use the distributive property to multiply \frac{1}{3} by \sqrt{2}-\sqrt{11}.
\frac{1}{3}\sqrt{2}-\frac{1}{3}\sqrt{11}
Multiply \frac{1}{3} and -1 to get -\frac{1}{3}.