Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-27\right)^{1}x^{7}y^{2}}{\left(-9\right)^{1}x^{6}y^{5}}
Use the rules of exponents to simplify the expression.
\frac{\left(-27\right)^{1}}{\left(-9\right)^{1}}x^{7-6}y^{2-5}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(-27\right)^{1}}{\left(-9\right)^{1}}x^{1}y^{2-5}
Subtract 6 from 7.
\frac{\left(-27\right)^{1}}{\left(-9\right)^{1}}xy^{-3}
Subtract 5 from 2.
3x\times \frac{1}{y^{3}}
Divide -27 by -9.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\frac{27y^{2}}{-9y^{5}}\right)x^{7-6})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3}{y^{3}}x^{1})
Do the arithmetic.
\frac{3}{y^{3}}x^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{3}{y^{3}}x^{0}
Do the arithmetic.
\frac{3}{y^{3}}\times 1
For any term t except 0, t^{0}=1.
\frac{3}{y^{3}}
For any term t, t\times 1=t and 1t=t.