Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. c
Tick mark Image

Similar Problems from Web Search

Share

\left(-20c^{7}\right)^{1}\times \frac{1}{-10c^{2}}
Use the rules of exponents to simplify the expression.
\left(-20\right)^{1}\left(c^{7}\right)^{1}\times \frac{1}{-10}\times \frac{1}{c^{2}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(-20\right)^{1}\times \frac{1}{-10}\left(c^{7}\right)^{1}\times \frac{1}{c^{2}}
Use the Commutative Property of Multiplication.
\left(-20\right)^{1}\times \frac{1}{-10}c^{7}c^{2\left(-1\right)}
To raise a power to another power, multiply the exponents.
\left(-20\right)^{1}\times \frac{1}{-10}c^{7}c^{-2}
Multiply 2 times -1.
\left(-20\right)^{1}\times \frac{1}{-10}c^{7-2}
To multiply powers of the same base, add their exponents.
\left(-20\right)^{1}\times \frac{1}{-10}c^{5}
Add the exponents 7 and -2.
-20\times \frac{1}{-10}c^{5}
Raise -20 to the power 1.
-20\left(-\frac{1}{10}\right)c^{5}
Raise -10 to the power -1.
2c^{5}
Multiply -20 times -\frac{1}{10}.
\frac{\left(-20\right)^{1}c^{7}}{\left(-10\right)^{1}c^{2}}
Use the rules of exponents to simplify the expression.
\frac{\left(-20\right)^{1}c^{7-2}}{\left(-10\right)^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(-20\right)^{1}c^{5}}{\left(-10\right)^{1}}
Subtract 2 from 7.
2c^{5}
Divide -20 by -10.
\frac{\mathrm{d}}{\mathrm{d}c}(\left(-\frac{20}{-10}\right)c^{7-2})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}c}(2c^{5})
Do the arithmetic.
5\times 2c^{5-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
10c^{4}
Do the arithmetic.