Solve for x
x=5\sqrt{6}-5\approx 7.247448714
x=-5\sqrt{6}-5\approx -17.247448714
Graph
Share
Copied to clipboard
-2x^{2}-20x+250=0
Variable x cannot be equal to any of the values -10,0 since division by zero is not defined. Multiply both sides of the equation by 3x\left(x+10\right).
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\left(-2\right)\times 250}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -20 for b, and 250 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\left(-2\right)\times 250}}{2\left(-2\right)}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400+8\times 250}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-20\right)±\sqrt{400+2000}}{2\left(-2\right)}
Multiply 8 times 250.
x=\frac{-\left(-20\right)±\sqrt{2400}}{2\left(-2\right)}
Add 400 to 2000.
x=\frac{-\left(-20\right)±20\sqrt{6}}{2\left(-2\right)}
Take the square root of 2400.
x=\frac{20±20\sqrt{6}}{2\left(-2\right)}
The opposite of -20 is 20.
x=\frac{20±20\sqrt{6}}{-4}
Multiply 2 times -2.
x=\frac{20\sqrt{6}+20}{-4}
Now solve the equation x=\frac{20±20\sqrt{6}}{-4} when ± is plus. Add 20 to 20\sqrt{6}.
x=-5\sqrt{6}-5
Divide 20+20\sqrt{6} by -4.
x=\frac{20-20\sqrt{6}}{-4}
Now solve the equation x=\frac{20±20\sqrt{6}}{-4} when ± is minus. Subtract 20\sqrt{6} from 20.
x=5\sqrt{6}-5
Divide 20-20\sqrt{6} by -4.
x=-5\sqrt{6}-5 x=5\sqrt{6}-5
The equation is now solved.
-2x^{2}-20x+250=0
Variable x cannot be equal to any of the values -10,0 since division by zero is not defined. Multiply both sides of the equation by 3x\left(x+10\right).
-2x^{2}-20x=-250
Subtract 250 from both sides. Anything subtracted from zero gives its negation.
\frac{-2x^{2}-20x}{-2}=-\frac{250}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{20}{-2}\right)x=-\frac{250}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+10x=-\frac{250}{-2}
Divide -20 by -2.
x^{2}+10x=125
Divide -250 by -2.
x^{2}+10x+5^{2}=125+5^{2}
Divide 10, the coefficient of the x term, by 2 to get 5. Then add the square of 5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+10x+25=125+25
Square 5.
x^{2}+10x+25=150
Add 125 to 25.
\left(x+5\right)^{2}=150
Factor x^{2}+10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{150}
Take the square root of both sides of the equation.
x+5=5\sqrt{6} x+5=-5\sqrt{6}
Simplify.
x=5\sqrt{6}-5 x=-5\sqrt{6}-5
Subtract 5 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}