Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-2i\left(-6+5i\right)}{\left(-6-5i\right)\left(-6+5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -6+5i.
\frac{-2i\left(-6+5i\right)}{\left(-6\right)^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-2i\left(-6+5i\right)}{61}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-2i\left(-6\right)-2\times 5i^{2}}{61}
Multiply -2i times -6+5i.
\frac{-2i\left(-6\right)-2\times 5\left(-1\right)}{61}
By definition, i^{2} is -1.
\frac{10+12i}{61}
Do the multiplications in -2i\left(-6\right)-2\times 5\left(-1\right). Reorder the terms.
\frac{10}{61}+\frac{12}{61}i
Divide 10+12i by 61 to get \frac{10}{61}+\frac{12}{61}i.
Re(\frac{-2i\left(-6+5i\right)}{\left(-6-5i\right)\left(-6+5i\right)})
Multiply both numerator and denominator of \frac{-2i}{-6-5i} by the complex conjugate of the denominator, -6+5i.
Re(\frac{-2i\left(-6+5i\right)}{\left(-6\right)^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{-2i\left(-6+5i\right)}{61})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-2i\left(-6\right)-2\times 5i^{2}}{61})
Multiply -2i times -6+5i.
Re(\frac{-2i\left(-6\right)-2\times 5\left(-1\right)}{61})
By definition, i^{2} is -1.
Re(\frac{10+12i}{61})
Do the multiplications in -2i\left(-6\right)-2\times 5\left(-1\right). Reorder the terms.
Re(\frac{10}{61}+\frac{12}{61}i)
Divide 10+12i by 61 to get \frac{10}{61}+\frac{12}{61}i.
\frac{10}{61}
The real part of \frac{10}{61}+\frac{12}{61}i is \frac{10}{61}.