Evaluate
-\frac{7}{4}=-1.75
Factor
-\frac{7}{4} = -1\frac{3}{4} = -1.75
Share
Copied to clipboard
-\frac{2}{5}-\left(\frac{\frac{1}{3}+\frac{1}{-4}}{\frac{1}{15}}+\frac{1}{10}\right)
Fraction \frac{-2}{5} can be rewritten as -\frac{2}{5} by extracting the negative sign.
-\frac{2}{5}-\left(\frac{\frac{1}{3}-\frac{1}{4}}{\frac{1}{15}}+\frac{1}{10}\right)
Fraction \frac{1}{-4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
-\frac{2}{5}-\left(\frac{\frac{4}{12}-\frac{3}{12}}{\frac{1}{15}}+\frac{1}{10}\right)
Least common multiple of 3 and 4 is 12. Convert \frac{1}{3} and \frac{1}{4} to fractions with denominator 12.
-\frac{2}{5}-\left(\frac{\frac{4-3}{12}}{\frac{1}{15}}+\frac{1}{10}\right)
Since \frac{4}{12} and \frac{3}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{2}{5}-\left(\frac{\frac{1}{12}}{\frac{1}{15}}+\frac{1}{10}\right)
Subtract 3 from 4 to get 1.
-\frac{2}{5}-\left(\frac{1}{12}\times 15+\frac{1}{10}\right)
Divide \frac{1}{12} by \frac{1}{15} by multiplying \frac{1}{12} by the reciprocal of \frac{1}{15}.
-\frac{2}{5}-\left(\frac{15}{12}+\frac{1}{10}\right)
Multiply \frac{1}{12} and 15 to get \frac{15}{12}.
-\frac{2}{5}-\left(\frac{5}{4}+\frac{1}{10}\right)
Reduce the fraction \frac{15}{12} to lowest terms by extracting and canceling out 3.
-\frac{2}{5}-\left(\frac{25}{20}+\frac{2}{20}\right)
Least common multiple of 4 and 10 is 20. Convert \frac{5}{4} and \frac{1}{10} to fractions with denominator 20.
-\frac{2}{5}-\frac{25+2}{20}
Since \frac{25}{20} and \frac{2}{20} have the same denominator, add them by adding their numerators.
-\frac{2}{5}-\frac{27}{20}
Add 25 and 2 to get 27.
-\frac{8}{20}-\frac{27}{20}
Least common multiple of 5 and 20 is 20. Convert -\frac{2}{5} and \frac{27}{20} to fractions with denominator 20.
\frac{-8-27}{20}
Since -\frac{8}{20} and \frac{27}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{-35}{20}
Subtract 27 from -8 to get -35.
-\frac{7}{4}
Reduce the fraction \frac{-35}{20} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}