Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-2\sqrt{3}+i\right)\left(1-2i\sqrt{3}\right)}{\left(1+2i\sqrt{3}\right)\left(1-2i\sqrt{3}\right)}
Rationalize the denominator of \frac{-2\sqrt{3}+i}{1+2i\sqrt{3}} by multiplying numerator and denominator by 1-2i\sqrt{3}.
\frac{\left(-2\sqrt{3}+i\right)\left(1-2i\sqrt{3}\right)}{1^{2}-\left(2i\sqrt{3}\right)^{2}}
Consider \left(1+2i\sqrt{3}\right)\left(1-2i\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2\sqrt{3}+i\right)\left(1-2i\sqrt{3}\right)}{1-\left(2i\sqrt{3}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{\left(-2\sqrt{3}+i\right)\left(1-2i\sqrt{3}\right)}{1-\left(2i\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(2i\sqrt{3}\right)^{2}.
\frac{\left(-2\sqrt{3}+i\right)\left(1-2i\sqrt{3}\right)}{1-\left(-4\left(\sqrt{3}\right)^{2}\right)}
Calculate 2i to the power of 2 and get -4.
\frac{\left(-2\sqrt{3}+i\right)\left(1-2i\sqrt{3}\right)}{1-\left(-4\times 3\right)}
The square of \sqrt{3} is 3.
\frac{\left(-2\sqrt{3}+i\right)\left(1-2i\sqrt{3}\right)}{1-\left(-12\right)}
Multiply -4 and 3 to get -12.
\frac{\left(-2\sqrt{3}+i\right)\left(1-2i\sqrt{3}\right)}{1+12}
Multiply -1 and -12 to get 12.
\frac{\left(-2\sqrt{3}+i\right)\left(1-2i\sqrt{3}\right)}{13}
Add 1 and 12 to get 13.
\frac{-2\sqrt{3}+4i\left(\sqrt{3}\right)^{2}+i+2\sqrt{3}}{13}
Apply the distributive property by multiplying each term of -2\sqrt{3}+i by each term of 1-2i\sqrt{3}.
\frac{-2\sqrt{3}+4i\times 3+i+2\sqrt{3}}{13}
The square of \sqrt{3} is 3.
\frac{-2\sqrt{3}+12i+i+2\sqrt{3}}{13}
Multiply 4i and 3 to get 12i.
\frac{-2\sqrt{3}+13i+2\sqrt{3}}{13}
Add 12i and i to get 13i.
\frac{13i}{13}
Combine -2\sqrt{3} and 2\sqrt{3} to get 0.
i
Divide 13i by 13 to get i.
Re(\frac{\left(-2\sqrt{3}+i\right)\left(1-2i\sqrt{3}\right)}{\left(1+2i\sqrt{3}\right)\left(1-2i\sqrt{3}\right)})
Rationalize the denominator of \frac{-2\sqrt{3}+i}{1+2i\sqrt{3}} by multiplying numerator and denominator by 1-2i\sqrt{3}.
Re(\frac{\left(-2\sqrt{3}+i\right)\left(1-2i\sqrt{3}\right)}{1^{2}-\left(2i\sqrt{3}\right)^{2}})
Consider \left(1+2i\sqrt{3}\right)\left(1-2i\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-2\sqrt{3}+i\right)\left(1-2i\sqrt{3}\right)}{1-\left(2i\sqrt{3}\right)^{2}})
Calculate 1 to the power of 2 and get 1.
Re(\frac{\left(-2\sqrt{3}+i\right)\left(1-2i\sqrt{3}\right)}{1-\left(2i\right)^{2}\left(\sqrt{3}\right)^{2}})
Expand \left(2i\sqrt{3}\right)^{2}.
Re(\frac{\left(-2\sqrt{3}+i\right)\left(1-2i\sqrt{3}\right)}{1-\left(-4\left(\sqrt{3}\right)^{2}\right)})
Calculate 2i to the power of 2 and get -4.
Re(\frac{\left(-2\sqrt{3}+i\right)\left(1-2i\sqrt{3}\right)}{1-\left(-4\times 3\right)})
The square of \sqrt{3} is 3.
Re(\frac{\left(-2\sqrt{3}+i\right)\left(1-2i\sqrt{3}\right)}{1-\left(-12\right)})
Multiply -4 and 3 to get -12.
Re(\frac{\left(-2\sqrt{3}+i\right)\left(1-2i\sqrt{3}\right)}{1+12})
Multiply -1 and -12 to get 12.
Re(\frac{\left(-2\sqrt{3}+i\right)\left(1-2i\sqrt{3}\right)}{13})
Add 1 and 12 to get 13.
Re(\frac{-2\sqrt{3}+4i\left(\sqrt{3}\right)^{2}+i+2\sqrt{3}}{13})
Apply the distributive property by multiplying each term of -2\sqrt{3}+i by each term of 1-2i\sqrt{3}.
Re(\frac{-2\sqrt{3}+4i\times 3+i+2\sqrt{3}}{13})
The square of \sqrt{3} is 3.
Re(\frac{-2\sqrt{3}+12i+i+2\sqrt{3}}{13})
Multiply 4i and 3 to get 12i.
Re(\frac{-2\sqrt{3}+13i+2\sqrt{3}}{13})
Add 12i and i to get 13i.
Re(\frac{13i}{13})
Combine -2\sqrt{3} and 2\sqrt{3} to get 0.
Re(i)
Divide 13i by 13 to get i.
0
The real part of i is 0.