Evaluate
-\frac{6}{65}-\frac{17}{65}i\approx -0.092307692-0.261538462i
Real Part
-\frac{6}{65} = -0.09230769230769231
Share
Copied to clipboard
\frac{\left(-2+i\right)\left(-1+8i\right)}{\left(-1-8i\right)\left(-1+8i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -1+8i.
\frac{\left(-2+i\right)\left(-1+8i\right)}{\left(-1\right)^{2}-8^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2+i\right)\left(-1+8i\right)}{65}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-2\left(-1\right)-2\times \left(8i\right)-i+8i^{2}}{65}
Multiply complex numbers -2+i and -1+8i like you multiply binomials.
\frac{-2\left(-1\right)-2\times \left(8i\right)-i+8\left(-1\right)}{65}
By definition, i^{2} is -1.
\frac{2-16i-i-8}{65}
Do the multiplications in -2\left(-1\right)-2\times \left(8i\right)-i+8\left(-1\right).
\frac{2-8+\left(-16-1\right)i}{65}
Combine the real and imaginary parts in 2-16i-i-8.
\frac{-6-17i}{65}
Do the additions in 2-8+\left(-16-1\right)i.
-\frac{6}{65}-\frac{17}{65}i
Divide -6-17i by 65 to get -\frac{6}{65}-\frac{17}{65}i.
Re(\frac{\left(-2+i\right)\left(-1+8i\right)}{\left(-1-8i\right)\left(-1+8i\right)})
Multiply both numerator and denominator of \frac{-2+i}{-1-8i} by the complex conjugate of the denominator, -1+8i.
Re(\frac{\left(-2+i\right)\left(-1+8i\right)}{\left(-1\right)^{2}-8^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-2+i\right)\left(-1+8i\right)}{65})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-2\left(-1\right)-2\times \left(8i\right)-i+8i^{2}}{65})
Multiply complex numbers -2+i and -1+8i like you multiply binomials.
Re(\frac{-2\left(-1\right)-2\times \left(8i\right)-i+8\left(-1\right)}{65})
By definition, i^{2} is -1.
Re(\frac{2-16i-i-8}{65})
Do the multiplications in -2\left(-1\right)-2\times \left(8i\right)-i+8\left(-1\right).
Re(\frac{2-8+\left(-16-1\right)i}{65})
Combine the real and imaginary parts in 2-16i-i-8.
Re(\frac{-6-17i}{65})
Do the additions in 2-8+\left(-16-1\right)i.
Re(-\frac{6}{65}-\frac{17}{65}i)
Divide -6-17i by 65 to get -\frac{6}{65}-\frac{17}{65}i.
-\frac{6}{65}
The real part of -\frac{6}{65}-\frac{17}{65}i is -\frac{6}{65}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}