Evaluate
-\frac{16}{25}+\frac{8}{5}i=-0.64+1.6i
Real Part
-\frac{16}{25} = -0.64
Share
Copied to clipboard
\frac{\left(-2+5i\right)\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)}\times \frac{1+7}{3+4i}
Multiply both numerator and denominator of \frac{-2+5i}{3-4i} by the complex conjugate of the denominator, 3+4i.
\frac{\left(-2+5i\right)\left(3+4i\right)}{3^{2}-4^{2}i^{2}}\times \frac{1+7}{3+4i}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2+5i\right)\left(3+4i\right)}{25}\times \frac{1+7}{3+4i}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-2\times 3-2\times \left(4i\right)+5i\times 3+5\times 4i^{2}}{25}\times \frac{1+7}{3+4i}
Multiply complex numbers -2+5i and 3+4i like you multiply binomials.
\frac{-2\times 3-2\times \left(4i\right)+5i\times 3+5\times 4\left(-1\right)}{25}\times \frac{1+7}{3+4i}
By definition, i^{2} is -1.
\frac{-6-8i+15i-20}{25}\times \frac{1+7}{3+4i}
Do the multiplications in -2\times 3-2\times \left(4i\right)+5i\times 3+5\times 4\left(-1\right).
\frac{-6-20+\left(-8+15\right)i}{25}\times \frac{1+7}{3+4i}
Combine the real and imaginary parts in -6-8i+15i-20.
\frac{-26+7i}{25}\times \frac{1+7}{3+4i}
Do the additions in -6-20+\left(-8+15\right)i.
\left(-\frac{26}{25}+\frac{7}{25}i\right)\times \frac{1+7}{3+4i}
Divide -26+7i by 25 to get -\frac{26}{25}+\frac{7}{25}i.
\left(-\frac{26}{25}+\frac{7}{25}i\right)\times \frac{8}{3+4i}
Add 1 and 7 to get 8.
\left(-\frac{26}{25}+\frac{7}{25}i\right)\times \frac{8\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)}
Multiply both numerator and denominator of \frac{8}{3+4i} by the complex conjugate of the denominator, 3-4i.
\left(-\frac{26}{25}+\frac{7}{25}i\right)\times \frac{8\left(3-4i\right)}{3^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(-\frac{26}{25}+\frac{7}{25}i\right)\times \frac{8\left(3-4i\right)}{25}
By definition, i^{2} is -1. Calculate the denominator.
\left(-\frac{26}{25}+\frac{7}{25}i\right)\times \frac{8\times 3+8\times \left(-4i\right)}{25}
Multiply 8 times 3-4i.
\left(-\frac{26}{25}+\frac{7}{25}i\right)\times \frac{24-32i}{25}
Do the multiplications in 8\times 3+8\times \left(-4i\right).
\left(-\frac{26}{25}+\frac{7}{25}i\right)\left(\frac{24}{25}-\frac{32}{25}i\right)
Divide 24-32i by 25 to get \frac{24}{25}-\frac{32}{25}i.
-\frac{26}{25}\times \frac{24}{25}-\frac{26}{25}\times \left(-\frac{32}{25}i\right)+\frac{7}{25}i\times \frac{24}{25}+\frac{7}{25}\left(-\frac{32}{25}\right)i^{2}
Multiply complex numbers -\frac{26}{25}+\frac{7}{25}i and \frac{24}{25}-\frac{32}{25}i like you multiply binomials.
-\frac{26}{25}\times \frac{24}{25}-\frac{26}{25}\times \left(-\frac{32}{25}i\right)+\frac{7}{25}i\times \frac{24}{25}+\frac{7}{25}\left(-\frac{32}{25}\right)\left(-1\right)
By definition, i^{2} is -1.
-\frac{624}{625}+\frac{832}{625}i+\frac{168}{625}i+\frac{224}{625}
Do the multiplications.
-\frac{624}{625}+\frac{224}{625}+\left(\frac{832}{625}+\frac{168}{625}\right)i
Combine the real and imaginary parts.
-\frac{16}{25}+\frac{8}{5}i
Do the additions.
Re(\frac{\left(-2+5i\right)\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)}\times \frac{1+7}{3+4i})
Multiply both numerator and denominator of \frac{-2+5i}{3-4i} by the complex conjugate of the denominator, 3+4i.
Re(\frac{\left(-2+5i\right)\left(3+4i\right)}{3^{2}-4^{2}i^{2}}\times \frac{1+7}{3+4i})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-2+5i\right)\left(3+4i\right)}{25}\times \frac{1+7}{3+4i})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-2\times 3-2\times \left(4i\right)+5i\times 3+5\times 4i^{2}}{25}\times \frac{1+7}{3+4i})
Multiply complex numbers -2+5i and 3+4i like you multiply binomials.
Re(\frac{-2\times 3-2\times \left(4i\right)+5i\times 3+5\times 4\left(-1\right)}{25}\times \frac{1+7}{3+4i})
By definition, i^{2} is -1.
Re(\frac{-6-8i+15i-20}{25}\times \frac{1+7}{3+4i})
Do the multiplications in -2\times 3-2\times \left(4i\right)+5i\times 3+5\times 4\left(-1\right).
Re(\frac{-6-20+\left(-8+15\right)i}{25}\times \frac{1+7}{3+4i})
Combine the real and imaginary parts in -6-8i+15i-20.
Re(\frac{-26+7i}{25}\times \frac{1+7}{3+4i})
Do the additions in -6-20+\left(-8+15\right)i.
Re(\left(-\frac{26}{25}+\frac{7}{25}i\right)\times \frac{1+7}{3+4i})
Divide -26+7i by 25 to get -\frac{26}{25}+\frac{7}{25}i.
Re(\left(-\frac{26}{25}+\frac{7}{25}i\right)\times \frac{8}{3+4i})
Add 1 and 7 to get 8.
Re(\left(-\frac{26}{25}+\frac{7}{25}i\right)\times \frac{8\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)})
Multiply both numerator and denominator of \frac{8}{3+4i} by the complex conjugate of the denominator, 3-4i.
Re(\left(-\frac{26}{25}+\frac{7}{25}i\right)\times \frac{8\left(3-4i\right)}{3^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\left(-\frac{26}{25}+\frac{7}{25}i\right)\times \frac{8\left(3-4i\right)}{25})
By definition, i^{2} is -1. Calculate the denominator.
Re(\left(-\frac{26}{25}+\frac{7}{25}i\right)\times \frac{8\times 3+8\times \left(-4i\right)}{25})
Multiply 8 times 3-4i.
Re(\left(-\frac{26}{25}+\frac{7}{25}i\right)\times \frac{24-32i}{25})
Do the multiplications in 8\times 3+8\times \left(-4i\right).
Re(\left(-\frac{26}{25}+\frac{7}{25}i\right)\left(\frac{24}{25}-\frac{32}{25}i\right))
Divide 24-32i by 25 to get \frac{24}{25}-\frac{32}{25}i.
Re(-\frac{26}{25}\times \frac{24}{25}-\frac{26}{25}\times \left(-\frac{32}{25}i\right)+\frac{7}{25}i\times \frac{24}{25}+\frac{7}{25}\left(-\frac{32}{25}\right)i^{2})
Multiply complex numbers -\frac{26}{25}+\frac{7}{25}i and \frac{24}{25}-\frac{32}{25}i like you multiply binomials.
Re(-\frac{26}{25}\times \frac{24}{25}-\frac{26}{25}\times \left(-\frac{32}{25}i\right)+\frac{7}{25}i\times \frac{24}{25}+\frac{7}{25}\left(-\frac{32}{25}\right)\left(-1\right))
By definition, i^{2} is -1.
Re(-\frac{624}{625}+\frac{832}{625}i+\frac{168}{625}i+\frac{224}{625})
Do the multiplications in -\frac{26}{25}\times \frac{24}{25}-\frac{26}{25}\times \left(-\frac{32}{25}i\right)+\frac{7}{25}i\times \frac{24}{25}+\frac{7}{25}\left(-\frac{32}{25}\right)\left(-1\right).
Re(-\frac{624}{625}+\frac{224}{625}+\left(\frac{832}{625}+\frac{168}{625}\right)i)
Combine the real and imaginary parts in -\frac{624}{625}+\frac{832}{625}i+\frac{168}{625}i+\frac{224}{625}.
Re(-\frac{16}{25}+\frac{8}{5}i)
Do the additions in -\frac{624}{625}+\frac{224}{625}+\left(\frac{832}{625}+\frac{168}{625}\right)i.
-\frac{16}{25}
The real part of -\frac{16}{25}+\frac{8}{5}i is -\frac{16}{25}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}