Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-17+20i\right)\left(7+2i\right)}{\left(7-2i\right)\left(7+2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 7+2i.
\frac{\left(-17+20i\right)\left(7+2i\right)}{7^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-17+20i\right)\left(7+2i\right)}{53}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-17\times 7-17\times \left(2i\right)+20i\times 7+20\times 2i^{2}}{53}
Multiply complex numbers -17+20i and 7+2i like you multiply binomials.
\frac{-17\times 7-17\times \left(2i\right)+20i\times 7+20\times 2\left(-1\right)}{53}
By definition, i^{2} is -1.
\frac{-119-34i+140i-40}{53}
Do the multiplications in -17\times 7-17\times \left(2i\right)+20i\times 7+20\times 2\left(-1\right).
\frac{-119-40+\left(-34+140\right)i}{53}
Combine the real and imaginary parts in -119-34i+140i-40.
\frac{-159+106i}{53}
Do the additions in -119-40+\left(-34+140\right)i.
-3+2i
Divide -159+106i by 53 to get -3+2i.
Re(\frac{\left(-17+20i\right)\left(7+2i\right)}{\left(7-2i\right)\left(7+2i\right)})
Multiply both numerator and denominator of \frac{-17+20i}{7-2i} by the complex conjugate of the denominator, 7+2i.
Re(\frac{\left(-17+20i\right)\left(7+2i\right)}{7^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-17+20i\right)\left(7+2i\right)}{53})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-17\times 7-17\times \left(2i\right)+20i\times 7+20\times 2i^{2}}{53})
Multiply complex numbers -17+20i and 7+2i like you multiply binomials.
Re(\frac{-17\times 7-17\times \left(2i\right)+20i\times 7+20\times 2\left(-1\right)}{53})
By definition, i^{2} is -1.
Re(\frac{-119-34i+140i-40}{53})
Do the multiplications in -17\times 7-17\times \left(2i\right)+20i\times 7+20\times 2\left(-1\right).
Re(\frac{-119-40+\left(-34+140\right)i}{53})
Combine the real and imaginary parts in -119-34i+140i-40.
Re(\frac{-159+106i}{53})
Do the additions in -119-40+\left(-34+140\right)i.
Re(-3+2i)
Divide -159+106i by 53 to get -3+2i.
-3
The real part of -3+2i is -3.