Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{-16}{2\sqrt{2}+4}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{-16\left(2\sqrt{2}-4\right)}{\left(2\sqrt{2}+4\right)\left(2\sqrt{2}-4\right)}
Rationalize the denominator of \frac{-16}{2\sqrt{2}+4} by multiplying numerator and denominator by 2\sqrt{2}-4.
\frac{-16\left(2\sqrt{2}-4\right)}{\left(2\sqrt{2}\right)^{2}-4^{2}}
Consider \left(2\sqrt{2}+4\right)\left(2\sqrt{2}-4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-16\left(2\sqrt{2}-4\right)}{2^{2}\left(\sqrt{2}\right)^{2}-4^{2}}
Expand \left(2\sqrt{2}\right)^{2}.
\frac{-16\left(2\sqrt{2}-4\right)}{4\left(\sqrt{2}\right)^{2}-4^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{-16\left(2\sqrt{2}-4\right)}{4\times 2-4^{2}}
The square of \sqrt{2} is 2.
\frac{-16\left(2\sqrt{2}-4\right)}{8-4^{2}}
Multiply 4 and 2 to get 8.
\frac{-16\left(2\sqrt{2}-4\right)}{8-16}
Calculate 4 to the power of 2 and get 16.
\frac{-16\left(2\sqrt{2}-4\right)}{-8}
Subtract 16 from 8 to get -8.
2\left(2\sqrt{2}-4\right)
Divide -16\left(2\sqrt{2}-4\right) by -8 to get 2\left(2\sqrt{2}-4\right).
4\sqrt{2}-8
Use the distributive property to multiply 2 by 2\sqrt{2}-4.