Evaluate
4\left(\sqrt{2}-2\right)\approx -2.343145751
Share
Copied to clipboard
\frac{-16}{2\sqrt{2}+4}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{-16\left(2\sqrt{2}-4\right)}{\left(2\sqrt{2}+4\right)\left(2\sqrt{2}-4\right)}
Rationalize the denominator of \frac{-16}{2\sqrt{2}+4} by multiplying numerator and denominator by 2\sqrt{2}-4.
\frac{-16\left(2\sqrt{2}-4\right)}{\left(2\sqrt{2}\right)^{2}-4^{2}}
Consider \left(2\sqrt{2}+4\right)\left(2\sqrt{2}-4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-16\left(2\sqrt{2}-4\right)}{2^{2}\left(\sqrt{2}\right)^{2}-4^{2}}
Expand \left(2\sqrt{2}\right)^{2}.
\frac{-16\left(2\sqrt{2}-4\right)}{4\left(\sqrt{2}\right)^{2}-4^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{-16\left(2\sqrt{2}-4\right)}{4\times 2-4^{2}}
The square of \sqrt{2} is 2.
\frac{-16\left(2\sqrt{2}-4\right)}{8-4^{2}}
Multiply 4 and 2 to get 8.
\frac{-16\left(2\sqrt{2}-4\right)}{8-16}
Calculate 4 to the power of 2 and get 16.
\frac{-16\left(2\sqrt{2}-4\right)}{-8}
Subtract 16 from 8 to get -8.
2\left(2\sqrt{2}-4\right)
Divide -16\left(2\sqrt{2}-4\right) by -8 to get 2\left(2\sqrt{2}-4\right).
4\sqrt{2}-8
Use the distributive property to multiply 2 by 2\sqrt{2}-4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}