Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-12i\left(14-8i\right)}{\left(14+8i\right)\left(14-8i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 14-8i.
\frac{-12i\left(14-8i\right)}{14^{2}-8^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-12i\left(14-8i\right)}{260}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-12i\times 14-12\left(-8\right)i^{2}}{260}
Multiply -12i times 14-8i.
\frac{-12i\times 14-12\left(-8\right)\left(-1\right)}{260}
By definition, i^{2} is -1.
\frac{-96-168i}{260}
Do the multiplications in -12i\times 14-12\left(-8\right)\left(-1\right). Reorder the terms.
-\frac{24}{65}-\frac{42}{65}i
Divide -96-168i by 260 to get -\frac{24}{65}-\frac{42}{65}i.
Re(\frac{-12i\left(14-8i\right)}{\left(14+8i\right)\left(14-8i\right)})
Multiply both numerator and denominator of \frac{-12i}{14+8i} by the complex conjugate of the denominator, 14-8i.
Re(\frac{-12i\left(14-8i\right)}{14^{2}-8^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{-12i\left(14-8i\right)}{260})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-12i\times 14-12\left(-8\right)i^{2}}{260})
Multiply -12i times 14-8i.
Re(\frac{-12i\times 14-12\left(-8\right)\left(-1\right)}{260})
By definition, i^{2} is -1.
Re(\frac{-96-168i}{260})
Do the multiplications in -12i\times 14-12\left(-8\right)\left(-1\right). Reorder the terms.
Re(-\frac{24}{65}-\frac{42}{65}i)
Divide -96-168i by 260 to get -\frac{24}{65}-\frac{42}{65}i.
-\frac{24}{65}
The real part of -\frac{24}{65}-\frac{42}{65}i is -\frac{24}{65}.