Evaluate
-\frac{103\sqrt{573}}{2292}\approx -1.075721682
Share
Copied to clipboard
\frac{-103}{\sqrt{1660-5\times 324}\sqrt{10535-5\times 45.4^{2}}}
Calculate 18 to the power of 2 and get 324.
\frac{-103}{\sqrt{1660-1620}\sqrt{10535-5\times 45.4^{2}}}
Multiply 5 and 324 to get 1620.
\frac{-103}{\sqrt{40}\sqrt{10535-5\times 45.4^{2}}}
Subtract 1620 from 1660 to get 40.
\frac{-103}{2\sqrt{10}\sqrt{10535-5\times 45.4^{2}}}
Factor 40=2^{2}\times 10. Rewrite the square root of the product \sqrt{2^{2}\times 10} as the product of square roots \sqrt{2^{2}}\sqrt{10}. Take the square root of 2^{2}.
\frac{-103}{2\sqrt{10}\sqrt{10535-5\times 2061.16}}
Calculate 45.4 to the power of 2 and get 2061.16.
\frac{-103}{2\sqrt{10}\sqrt{10535-10305.8}}
Multiply 5 and 2061.16 to get 10305.8.
\frac{-103}{2\sqrt{10}\sqrt{229.2}}
Subtract 10305.8 from 10535 to get 229.2.
\frac{-103}{2\sqrt{2292}}
To multiply \sqrt{10} and \sqrt{229.2}, multiply the numbers under the square root.
\frac{-103\sqrt{2292}}{2\left(\sqrt{2292}\right)^{2}}
Rationalize the denominator of \frac{-103}{2\sqrt{2292}} by multiplying numerator and denominator by \sqrt{2292}.
\frac{-103\sqrt{2292}}{2\times 2292}
The square of \sqrt{2292} is 2292.
\frac{-103\times 2\sqrt{573}}{2\times 2292}
Factor 2292=2^{2}\times 573. Rewrite the square root of the product \sqrt{2^{2}\times 573} as the product of square roots \sqrt{2^{2}}\sqrt{573}. Take the square root of 2^{2}.
\frac{-206\sqrt{573}}{2\times 2292}
Multiply -103 and 2 to get -206.
\frac{-206\sqrt{573}}{4584}
Multiply 2 and 2292 to get 4584.
-\frac{103}{2292}\sqrt{573}
Divide -206\sqrt{573} by 4584 to get -\frac{103}{2292}\sqrt{573}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}