Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{-103}{\sqrt{1660-5\times 324}\sqrt{10535-5\times 45.4^{2}}}
Calculate 18 to the power of 2 and get 324.
\frac{-103}{\sqrt{1660-1620}\sqrt{10535-5\times 45.4^{2}}}
Multiply 5 and 324 to get 1620.
\frac{-103}{\sqrt{40}\sqrt{10535-5\times 45.4^{2}}}
Subtract 1620 from 1660 to get 40.
\frac{-103}{2\sqrt{10}\sqrt{10535-5\times 45.4^{2}}}
Factor 40=2^{2}\times 10. Rewrite the square root of the product \sqrt{2^{2}\times 10} as the product of square roots \sqrt{2^{2}}\sqrt{10}. Take the square root of 2^{2}.
\frac{-103}{2\sqrt{10}\sqrt{10535-5\times 2061.16}}
Calculate 45.4 to the power of 2 and get 2061.16.
\frac{-103}{2\sqrt{10}\sqrt{10535-10305.8}}
Multiply 5 and 2061.16 to get 10305.8.
\frac{-103}{2\sqrt{10}\sqrt{229.2}}
Subtract 10305.8 from 10535 to get 229.2.
\frac{-103}{2\sqrt{2292}}
To multiply \sqrt{10} and \sqrt{229.2}, multiply the numbers under the square root.
\frac{-103\sqrt{2292}}{2\left(\sqrt{2292}\right)^{2}}
Rationalize the denominator of \frac{-103}{2\sqrt{2292}} by multiplying numerator and denominator by \sqrt{2292}.
\frac{-103\sqrt{2292}}{2\times 2292}
The square of \sqrt{2292} is 2292.
\frac{-103\times 2\sqrt{573}}{2\times 2292}
Factor 2292=2^{2}\times 573. Rewrite the square root of the product \sqrt{2^{2}\times 573} as the product of square roots \sqrt{2^{2}}\sqrt{573}. Take the square root of 2^{2}.
\frac{-206\sqrt{573}}{2\times 2292}
Multiply -103 and 2 to get -206.
\frac{-206\sqrt{573}}{4584}
Multiply 2 and 2292 to get 4584.
-\frac{103}{2292}\sqrt{573}
Divide -206\sqrt{573} by 4584 to get -\frac{103}{2292}\sqrt{573}.