Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-1-i\sqrt{3}\right)\left(-1-i\sqrt{3}\right)}{\left(-1+i\sqrt{3}\right)\left(-1-i\sqrt{3}\right)}
Rationalize the denominator of \frac{-1-i\sqrt{3}}{-1+i\sqrt{3}} by multiplying numerator and denominator by -1-i\sqrt{3}.
\frac{\left(-1-i\sqrt{3}\right)\left(-1-i\sqrt{3}\right)}{\left(-1\right)^{2}-\left(i\sqrt{3}\right)^{2}}
Consider \left(-1+i\sqrt{3}\right)\left(-1-i\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-1-i\sqrt{3}\right)\left(-1-i\sqrt{3}\right)}{1-\left(i\sqrt{3}\right)^{2}}
Calculate -1 to the power of 2 and get 1.
\frac{\left(-1-i\sqrt{3}\right)\left(-1-i\sqrt{3}\right)}{1-i^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(i\sqrt{3}\right)^{2}.
\frac{\left(-1-i\sqrt{3}\right)\left(-1-i\sqrt{3}\right)}{1-\left(-\left(\sqrt{3}\right)^{2}\right)}
Calculate i to the power of 2 and get -1.
\frac{\left(-1-i\sqrt{3}\right)\left(-1-i\sqrt{3}\right)}{1-\left(-3\right)}
The square of \sqrt{3} is 3.
\frac{\left(-1-i\sqrt{3}\right)\left(-1-i\sqrt{3}\right)}{1+3}
Multiply -1 and -3 to get 3.
\frac{\left(-1-i\sqrt{3}\right)\left(-1-i\sqrt{3}\right)}{4}
Add 1 and 3 to get 4.
\frac{-\left(-1-i\sqrt{3}\right)-i\left(-1-i\sqrt{3}\right)\sqrt{3}}{4}
Use the distributive property to multiply -1-i\sqrt{3} by -1-i\sqrt{3}.
\frac{-\left(-1\right)+i\sqrt{3}-i\left(-1-i\sqrt{3}\right)\sqrt{3}}{4}
To find the opposite of -1-i\sqrt{3}, find the opposite of each term.
\frac{1+i\sqrt{3}-i\left(-1-i\sqrt{3}\right)\sqrt{3}}{4}
The opposite of -1 is 1.
\frac{1+i\sqrt{3}+\left(i-\sqrt{3}\right)\sqrt{3}}{4}
Use the distributive property to multiply -i by -1-i\sqrt{3}.
\frac{1+i\sqrt{3}+i\sqrt{3}-\left(\sqrt{3}\right)^{2}}{4}
Use the distributive property to multiply i-\sqrt{3} by \sqrt{3}.
\frac{1+i\sqrt{3}+i\sqrt{3}-3}{4}
The square of \sqrt{3} is 3.
\frac{1+2i\sqrt{3}-3}{4}
Combine i\sqrt{3} and i\sqrt{3} to get 2i\sqrt{3}.
\frac{-2+2i\sqrt{3}}{4}
Subtract 3 from 1 to get -2.