Evaluate
\frac{1}{2}=0.5
Factor
\frac{1}{2} = 0.5
Share
Copied to clipboard
-\frac{1}{4}-\frac{-3}{4}
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
-\frac{1}{4}-\left(-\frac{3}{4}\right)
Fraction \frac{-3}{4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
-\frac{1}{4}+\frac{3}{4}
The opposite of -\frac{3}{4} is \frac{3}{4}.
\frac{-1+3}{4}
Since -\frac{1}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
\frac{2}{4}
Add -1 and 3 to get 2.
\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}