Evaluate
\frac{41}{45}\approx 0.911111111
Factor
\frac{41}{3 ^ {2} \cdot 5} = 0.9111111111111111
Share
Copied to clipboard
-\frac{1}{10}-\frac{1}{6}+\frac{41}{18}-7+\frac{23}{2}+\frac{12}{5}-8
Fraction \frac{-1}{10} can be rewritten as -\frac{1}{10} by extracting the negative sign.
-\frac{3}{30}-\frac{5}{30}+\frac{41}{18}-7+\frac{23}{2}+\frac{12}{5}-8
Least common multiple of 10 and 6 is 30. Convert -\frac{1}{10} and \frac{1}{6} to fractions with denominator 30.
\frac{-3-5}{30}+\frac{41}{18}-7+\frac{23}{2}+\frac{12}{5}-8
Since -\frac{3}{30} and \frac{5}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{-8}{30}+\frac{41}{18}-7+\frac{23}{2}+\frac{12}{5}-8
Subtract 5 from -3 to get -8.
-\frac{4}{15}+\frac{41}{18}-7+\frac{23}{2}+\frac{12}{5}-8
Reduce the fraction \frac{-8}{30} to lowest terms by extracting and canceling out 2.
-\frac{24}{90}+\frac{205}{90}-7+\frac{23}{2}+\frac{12}{5}-8
Least common multiple of 15 and 18 is 90. Convert -\frac{4}{15} and \frac{41}{18} to fractions with denominator 90.
\frac{-24+205}{90}-7+\frac{23}{2}+\frac{12}{5}-8
Since -\frac{24}{90} and \frac{205}{90} have the same denominator, add them by adding their numerators.
\frac{181}{90}-7+\frac{23}{2}+\frac{12}{5}-8
Add -24 and 205 to get 181.
\frac{181}{90}-\frac{630}{90}+\frac{23}{2}+\frac{12}{5}-8
Convert 7 to fraction \frac{630}{90}.
\frac{181-630}{90}+\frac{23}{2}+\frac{12}{5}-8
Since \frac{181}{90} and \frac{630}{90} have the same denominator, subtract them by subtracting their numerators.
-\frac{449}{90}+\frac{23}{2}+\frac{12}{5}-8
Subtract 630 from 181 to get -449.
-\frac{449}{90}+\frac{1035}{90}+\frac{12}{5}-8
Least common multiple of 90 and 2 is 90. Convert -\frac{449}{90} and \frac{23}{2} to fractions with denominator 90.
\frac{-449+1035}{90}+\frac{12}{5}-8
Since -\frac{449}{90} and \frac{1035}{90} have the same denominator, add them by adding their numerators.
\frac{586}{90}+\frac{12}{5}-8
Add -449 and 1035 to get 586.
\frac{293}{45}+\frac{12}{5}-8
Reduce the fraction \frac{586}{90} to lowest terms by extracting and canceling out 2.
\frac{293}{45}+\frac{108}{45}-8
Least common multiple of 45 and 5 is 45. Convert \frac{293}{45} and \frac{12}{5} to fractions with denominator 45.
\frac{293+108}{45}-8
Since \frac{293}{45} and \frac{108}{45} have the same denominator, add them by adding their numerators.
\frac{401}{45}-8
Add 293 and 108 to get 401.
\frac{401}{45}-\frac{360}{45}
Convert 8 to fraction \frac{360}{45}.
\frac{401-360}{45}
Since \frac{401}{45} and \frac{360}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{41}{45}
Subtract 360 from 401 to get 41.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}