Evaluate
\frac{22}{159}-\frac{5}{318}i\approx 0.13836478-0.01572327i
Real Part
\frac{22}{159} = 0.13836477987421383
Share
Copied to clipboard
\frac{\left(-1+6i\right)\left(-12-42i\right)}{\left(-12+42i\right)\left(-12-42i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -12-42i.
\frac{\left(-1+6i\right)\left(-12-42i\right)}{\left(-12\right)^{2}-42^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-1+6i\right)\left(-12-42i\right)}{1908}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-\left(-12\right)-\left(-42i\right)+6i\left(-12\right)+6\left(-42\right)i^{2}}{1908}
Multiply complex numbers -1+6i and -12-42i like you multiply binomials.
\frac{-\left(-12\right)-\left(-42i\right)+6i\left(-12\right)+6\left(-42\right)\left(-1\right)}{1908}
By definition, i^{2} is -1.
\frac{12+42i-72i+252}{1908}
Do the multiplications in -\left(-12\right)-\left(-42i\right)+6i\left(-12\right)+6\left(-42\right)\left(-1\right).
\frac{12+252+\left(42-72\right)i}{1908}
Combine the real and imaginary parts in 12+42i-72i+252.
\frac{264-30i}{1908}
Do the additions in 12+252+\left(42-72\right)i.
\frac{22}{159}-\frac{5}{318}i
Divide 264-30i by 1908 to get \frac{22}{159}-\frac{5}{318}i.
Re(\frac{\left(-1+6i\right)\left(-12-42i\right)}{\left(-12+42i\right)\left(-12-42i\right)})
Multiply both numerator and denominator of \frac{-1+6i}{-12+42i} by the complex conjugate of the denominator, -12-42i.
Re(\frac{\left(-1+6i\right)\left(-12-42i\right)}{\left(-12\right)^{2}-42^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-1+6i\right)\left(-12-42i\right)}{1908})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-\left(-12\right)-\left(-42i\right)+6i\left(-12\right)+6\left(-42\right)i^{2}}{1908})
Multiply complex numbers -1+6i and -12-42i like you multiply binomials.
Re(\frac{-\left(-12\right)-\left(-42i\right)+6i\left(-12\right)+6\left(-42\right)\left(-1\right)}{1908})
By definition, i^{2} is -1.
Re(\frac{12+42i-72i+252}{1908})
Do the multiplications in -\left(-12\right)-\left(-42i\right)+6i\left(-12\right)+6\left(-42\right)\left(-1\right).
Re(\frac{12+252+\left(42-72\right)i}{1908})
Combine the real and imaginary parts in 12+42i-72i+252.
Re(\frac{264-30i}{1908})
Do the additions in 12+252+\left(42-72\right)i.
Re(\frac{22}{159}-\frac{5}{318}i)
Divide 264-30i by 1908 to get \frac{22}{159}-\frac{5}{318}i.
\frac{22}{159}
The real part of \frac{22}{159}-\frac{5}{318}i is \frac{22}{159}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}