Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-1+5i\right)\left(-8+7i\right)}{\left(-8-7i\right)\left(-8+7i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -8+7i.
\frac{\left(-1+5i\right)\left(-8+7i\right)}{\left(-8\right)^{2}-7^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-1+5i\right)\left(-8+7i\right)}{113}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-\left(-8\right)-7i+5i\left(-8\right)+5\times 7i^{2}}{113}
Multiply complex numbers -1+5i and -8+7i like you multiply binomials.
\frac{-\left(-8\right)-7i+5i\left(-8\right)+5\times 7\left(-1\right)}{113}
By definition, i^{2} is -1.
\frac{8-7i-40i-35}{113}
Do the multiplications in -\left(-8\right)-7i+5i\left(-8\right)+5\times 7\left(-1\right).
\frac{8-35+\left(-7-40\right)i}{113}
Combine the real and imaginary parts in 8-7i-40i-35.
\frac{-27-47i}{113}
Do the additions in 8-35+\left(-7-40\right)i.
-\frac{27}{113}-\frac{47}{113}i
Divide -27-47i by 113 to get -\frac{27}{113}-\frac{47}{113}i.
Re(\frac{\left(-1+5i\right)\left(-8+7i\right)}{\left(-8-7i\right)\left(-8+7i\right)})
Multiply both numerator and denominator of \frac{-1+5i}{-8-7i} by the complex conjugate of the denominator, -8+7i.
Re(\frac{\left(-1+5i\right)\left(-8+7i\right)}{\left(-8\right)^{2}-7^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-1+5i\right)\left(-8+7i\right)}{113})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-\left(-8\right)-7i+5i\left(-8\right)+5\times 7i^{2}}{113})
Multiply complex numbers -1+5i and -8+7i like you multiply binomials.
Re(\frac{-\left(-8\right)-7i+5i\left(-8\right)+5\times 7\left(-1\right)}{113})
By definition, i^{2} is -1.
Re(\frac{8-7i-40i-35}{113})
Do the multiplications in -\left(-8\right)-7i+5i\left(-8\right)+5\times 7\left(-1\right).
Re(\frac{8-35+\left(-7-40\right)i}{113})
Combine the real and imaginary parts in 8-7i-40i-35.
Re(\frac{-27-47i}{113})
Do the additions in 8-35+\left(-7-40\right)i.
Re(-\frac{27}{113}-\frac{47}{113}i)
Divide -27-47i by 113 to get -\frac{27}{113}-\frac{47}{113}i.
-\frac{27}{113}
The real part of -\frac{27}{113}-\frac{47}{113}i is -\frac{27}{113}.