Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-1+2i}{3-i}\times 1
Divide 3+i by 3+i to get 1.
\frac{\left(-1+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}\times 1
Multiply both numerator and denominator of \frac{-1+2i}{3-i} by the complex conjugate of the denominator, 3+i.
\frac{-5+5i}{10}\times 1
Do the multiplications in \frac{\left(-1+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}.
\left(-\frac{1}{2}+\frac{1}{2}i\right)\times 1
Divide -5+5i by 10 to get -\frac{1}{2}+\frac{1}{2}i.
-\frac{1}{2}+\frac{1}{2}i
Multiply -\frac{1}{2}+\frac{1}{2}i and 1 to get -\frac{1}{2}+\frac{1}{2}i.
Re(\frac{-1+2i}{3-i}\times 1)
Divide 3+i by 3+i to get 1.
Re(\frac{\left(-1+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}\times 1)
Multiply both numerator and denominator of \frac{-1+2i}{3-i} by the complex conjugate of the denominator, 3+i.
Re(\frac{-5+5i}{10}\times 1)
Do the multiplications in \frac{\left(-1+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}.
Re(\left(-\frac{1}{2}+\frac{1}{2}i\right)\times 1)
Divide -5+5i by 10 to get -\frac{1}{2}+\frac{1}{2}i.
Re(-\frac{1}{2}+\frac{1}{2}i)
Multiply -\frac{1}{2}+\frac{1}{2}i and 1 to get -\frac{1}{2}+\frac{1}{2}i.
-\frac{1}{2}
The real part of -\frac{1}{2}+\frac{1}{2}i is -\frac{1}{2}.