Evaluate
-\frac{1}{2}+\frac{1}{2}i=-0.5+0.5i
Real Part
-\frac{1}{2} = -0.5
Quiz
Complex Number
5 problems similar to:
\frac { - 1 + 2 i } { 3 - i } \cdot \frac { 3 + i } { 3 + i } =
Share
Copied to clipboard
\frac{-1+2i}{3-i}\times 1
Divide 3+i by 3+i to get 1.
\frac{\left(-1+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}\times 1
Multiply both numerator and denominator of \frac{-1+2i}{3-i} by the complex conjugate of the denominator, 3+i.
\frac{-5+5i}{10}\times 1
Do the multiplications in \frac{\left(-1+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}.
\left(-\frac{1}{2}+\frac{1}{2}i\right)\times 1
Divide -5+5i by 10 to get -\frac{1}{2}+\frac{1}{2}i.
-\frac{1}{2}+\frac{1}{2}i
Multiply -\frac{1}{2}+\frac{1}{2}i and 1 to get -\frac{1}{2}+\frac{1}{2}i.
Re(\frac{-1+2i}{3-i}\times 1)
Divide 3+i by 3+i to get 1.
Re(\frac{\left(-1+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}\times 1)
Multiply both numerator and denominator of \frac{-1+2i}{3-i} by the complex conjugate of the denominator, 3+i.
Re(\frac{-5+5i}{10}\times 1)
Do the multiplications in \frac{\left(-1+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}.
Re(\left(-\frac{1}{2}+\frac{1}{2}i\right)\times 1)
Divide -5+5i by 10 to get -\frac{1}{2}+\frac{1}{2}i.
Re(-\frac{1}{2}+\frac{1}{2}i)
Multiply -\frac{1}{2}+\frac{1}{2}i and 1 to get -\frac{1}{2}+\frac{1}{2}i.
-\frac{1}{2}
The real part of -\frac{1}{2}+\frac{1}{2}i is -\frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}