Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-m-1\right)\left(n-4\right)}{\sqrt{4^{2}+m^{2}}}=\frac{4\sqrt{2}}{\sqrt{17}}
To find the opposite of m+1, find the opposite of each term.
\frac{\left(-m-1\right)\left(n-4\right)}{\sqrt{16+m^{2}}}=\frac{4\sqrt{2}}{\sqrt{17}}
Calculate 4 to the power of 2 and get 16.
\frac{\left(-m-1\right)\left(n-4\right)}{\sqrt{16+m^{2}}}=\frac{4\sqrt{2}\sqrt{17}}{\left(\sqrt{17}\right)^{2}}
Rationalize the denominator of \frac{4\sqrt{2}}{\sqrt{17}} by multiplying numerator and denominator by \sqrt{17}.
\frac{\left(-m-1\right)\left(n-4\right)}{\sqrt{16+m^{2}}}=\frac{4\sqrt{2}\sqrt{17}}{17}
The square of \sqrt{17} is 17.
\frac{\left(-m-1\right)\left(n-4\right)}{\sqrt{16+m^{2}}}=\frac{4\sqrt{34}}{17}
To multiply \sqrt{2} and \sqrt{17}, multiply the numbers under the square root.
\frac{-mn+4m-n+4}{\sqrt{16+m^{2}}}=\frac{4\sqrt{34}}{17}
Use the distributive property to multiply -m-1 by n-4.
17\left(16+m^{2}\right)^{-\frac{1}{2}}\left(-mn+4m-n+4\right)=4\sqrt{34}
Multiply both sides of the equation by 17.
17\left(m^{2}+16\right)^{-\frac{1}{2}}\left(-mn+4m-n+4\right)=4\sqrt{34}
Reorder the terms.
-17n\left(m^{2}+16\right)^{-\frac{1}{2}}m+68\left(m^{2}+16\right)^{-\frac{1}{2}}m-17n\left(m^{2}+16\right)^{-\frac{1}{2}}+68\left(m^{2}+16\right)^{-\frac{1}{2}}=4\sqrt{34}
Use the distributive property to multiply 17\left(m^{2}+16\right)^{-\frac{1}{2}} by -mn+4m-n+4.
-17n\left(m^{2}+16\right)^{-\frac{1}{2}}m-17n\left(m^{2}+16\right)^{-\frac{1}{2}}+68\left(m^{2}+16\right)^{-\frac{1}{2}}=4\sqrt{34}-68\left(m^{2}+16\right)^{-\frac{1}{2}}m
Subtract 68\left(m^{2}+16\right)^{-\frac{1}{2}}m from both sides.
-17n\left(m^{2}+16\right)^{-\frac{1}{2}}m-17n\left(m^{2}+16\right)^{-\frac{1}{2}}=4\sqrt{34}-68\left(m^{2}+16\right)^{-\frac{1}{2}}m-68\left(m^{2}+16\right)^{-\frac{1}{2}}
Subtract 68\left(m^{2}+16\right)^{-\frac{1}{2}} from both sides.
\left(-17\left(m^{2}+16\right)^{-\frac{1}{2}}m-17\left(m^{2}+16\right)^{-\frac{1}{2}}\right)n=4\sqrt{34}-68\left(m^{2}+16\right)^{-\frac{1}{2}}m-68\left(m^{2}+16\right)^{-\frac{1}{2}}
Combine all terms containing n.
\frac{-17m-17}{\sqrt{m^{2}+16}}n=-\frac{68m}{\sqrt{m^{2}+16}}+4\sqrt{34}-\frac{68}{\sqrt{m^{2}+16}}
The equation is in standard form.
\frac{\frac{-17m-17}{\sqrt{m^{2}+16}}n\sqrt{m^{2}+16}}{-17m-17}=\frac{4\left(\sqrt{34m^{2}+544}-17m-17\right)}{\sqrt{m^{2}+16}\times \frac{-17m-17}{\sqrt{m^{2}+16}}}
Divide both sides by -17\left(m^{2}+16\right)^{-\frac{1}{2}}m-17\left(m^{2}+16\right)^{-\frac{1}{2}}.
n=\frac{4\left(\sqrt{34m^{2}+544}-17m-17\right)}{\sqrt{m^{2}+16}\times \frac{-17m-17}{\sqrt{m^{2}+16}}}
Dividing by -17\left(m^{2}+16\right)^{-\frac{1}{2}}m-17\left(m^{2}+16\right)^{-\frac{1}{2}} undoes the multiplication by -17\left(m^{2}+16\right)^{-\frac{1}{2}}m-17\left(m^{2}+16\right)^{-\frac{1}{2}}.
n=-\frac{4\left(\sqrt{34m^{2}+544}-17m-17\right)}{17\left(m+1\right)}
Divide \frac{4\left(\sqrt{34m^{2}+544}-17m-17\right)}{\sqrt{m^{2}+16}} by -17\left(m^{2}+16\right)^{-\frac{1}{2}}m-17\left(m^{2}+16\right)^{-\frac{1}{2}}.