Solve for n
n=\frac{4\left(-\sqrt{34\left(m^{2}+16\right)}+17m+17\right)}{17\left(m+1\right)}
m\neq -1
Share
Copied to clipboard
\frac{\left(-m-1\right)\left(n-4\right)}{\sqrt{4^{2}+m^{2}}}=\frac{4\sqrt{2}}{\sqrt{17}}
To find the opposite of m+1, find the opposite of each term.
\frac{\left(-m-1\right)\left(n-4\right)}{\sqrt{16+m^{2}}}=\frac{4\sqrt{2}}{\sqrt{17}}
Calculate 4 to the power of 2 and get 16.
\frac{\left(-m-1\right)\left(n-4\right)}{\sqrt{16+m^{2}}}=\frac{4\sqrt{2}\sqrt{17}}{\left(\sqrt{17}\right)^{2}}
Rationalize the denominator of \frac{4\sqrt{2}}{\sqrt{17}} by multiplying numerator and denominator by \sqrt{17}.
\frac{\left(-m-1\right)\left(n-4\right)}{\sqrt{16+m^{2}}}=\frac{4\sqrt{2}\sqrt{17}}{17}
The square of \sqrt{17} is 17.
\frac{\left(-m-1\right)\left(n-4\right)}{\sqrt{16+m^{2}}}=\frac{4\sqrt{34}}{17}
To multiply \sqrt{2} and \sqrt{17}, multiply the numbers under the square root.
\frac{-mn+4m-n+4}{\sqrt{16+m^{2}}}=\frac{4\sqrt{34}}{17}
Use the distributive property to multiply -m-1 by n-4.
17\left(16+m^{2}\right)^{-\frac{1}{2}}\left(-mn+4m-n+4\right)=4\sqrt{34}
Multiply both sides of the equation by 17.
17\left(m^{2}+16\right)^{-\frac{1}{2}}\left(-mn+4m-n+4\right)=4\sqrt{34}
Reorder the terms.
-17n\left(m^{2}+16\right)^{-\frac{1}{2}}m+68\left(m^{2}+16\right)^{-\frac{1}{2}}m-17n\left(m^{2}+16\right)^{-\frac{1}{2}}+68\left(m^{2}+16\right)^{-\frac{1}{2}}=4\sqrt{34}
Use the distributive property to multiply 17\left(m^{2}+16\right)^{-\frac{1}{2}} by -mn+4m-n+4.
-17n\left(m^{2}+16\right)^{-\frac{1}{2}}m-17n\left(m^{2}+16\right)^{-\frac{1}{2}}+68\left(m^{2}+16\right)^{-\frac{1}{2}}=4\sqrt{34}-68\left(m^{2}+16\right)^{-\frac{1}{2}}m
Subtract 68\left(m^{2}+16\right)^{-\frac{1}{2}}m from both sides.
-17n\left(m^{2}+16\right)^{-\frac{1}{2}}m-17n\left(m^{2}+16\right)^{-\frac{1}{2}}=4\sqrt{34}-68\left(m^{2}+16\right)^{-\frac{1}{2}}m-68\left(m^{2}+16\right)^{-\frac{1}{2}}
Subtract 68\left(m^{2}+16\right)^{-\frac{1}{2}} from both sides.
\left(-17\left(m^{2}+16\right)^{-\frac{1}{2}}m-17\left(m^{2}+16\right)^{-\frac{1}{2}}\right)n=4\sqrt{34}-68\left(m^{2}+16\right)^{-\frac{1}{2}}m-68\left(m^{2}+16\right)^{-\frac{1}{2}}
Combine all terms containing n.
\frac{-17m-17}{\sqrt{m^{2}+16}}n=-\frac{68m}{\sqrt{m^{2}+16}}+4\sqrt{34}-\frac{68}{\sqrt{m^{2}+16}}
The equation is in standard form.
\frac{\frac{-17m-17}{\sqrt{m^{2}+16}}n\sqrt{m^{2}+16}}{-17m-17}=\frac{4\left(\sqrt{34m^{2}+544}-17m-17\right)}{\sqrt{m^{2}+16}\times \frac{-17m-17}{\sqrt{m^{2}+16}}}
Divide both sides by -17\left(m^{2}+16\right)^{-\frac{1}{2}}m-17\left(m^{2}+16\right)^{-\frac{1}{2}}.
n=\frac{4\left(\sqrt{34m^{2}+544}-17m-17\right)}{\sqrt{m^{2}+16}\times \frac{-17m-17}{\sqrt{m^{2}+16}}}
Dividing by -17\left(m^{2}+16\right)^{-\frac{1}{2}}m-17\left(m^{2}+16\right)^{-\frac{1}{2}} undoes the multiplication by -17\left(m^{2}+16\right)^{-\frac{1}{2}}m-17\left(m^{2}+16\right)^{-\frac{1}{2}}.
n=-\frac{4\left(\sqrt{34m^{2}+544}-17m-17\right)}{17\left(m+1\right)}
Divide \frac{4\left(\sqrt{34m^{2}+544}-17m-17\right)}{\sqrt{m^{2}+16}} by -17\left(m^{2}+16\right)^{-\frac{1}{2}}m-17\left(m^{2}+16\right)^{-\frac{1}{2}}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}