Evaluate
-\frac{17}{8}=-2.125
Factor
-\frac{17}{8} = -2\frac{1}{8} = -2.125
Share
Copied to clipboard
\frac{-\frac{2}{5}-\frac{15}{5}}{-\frac{2}{5}+2}
Convert 3 to fraction \frac{15}{5}.
\frac{\frac{-2-15}{5}}{-\frac{2}{5}+2}
Since -\frac{2}{5} and \frac{15}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{17}{5}}{-\frac{2}{5}+2}
Subtract 15 from -2 to get -17.
\frac{-\frac{17}{5}}{-\frac{2}{5}+\frac{10}{5}}
Convert 2 to fraction \frac{10}{5}.
\frac{-\frac{17}{5}}{\frac{-2+10}{5}}
Since -\frac{2}{5} and \frac{10}{5} have the same denominator, add them by adding their numerators.
\frac{-\frac{17}{5}}{\frac{8}{5}}
Add -2 and 10 to get 8.
-\frac{17}{5}\times \frac{5}{8}
Divide -\frac{17}{5} by \frac{8}{5} by multiplying -\frac{17}{5} by the reciprocal of \frac{8}{5}.
\frac{-17\times 5}{5\times 8}
Multiply -\frac{17}{5} times \frac{5}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{-17}{8}
Cancel out 5 in both numerator and denominator.
-\frac{17}{8}
Fraction \frac{-17}{8} can be rewritten as -\frac{17}{8} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}