Evaluate
\frac{22}{5}=4.4
Factor
\frac{2 \cdot 11}{5} = 4\frac{2}{5} = 4.4
Share
Copied to clipboard
\frac{-11\times \frac{1}{7}}{2\left(\frac{3}{4}-\frac{5}{7}+\frac{-3}{14}\right)}
Divide -\frac{11}{2} by \frac{\frac{3}{4}-\frac{5}{7}+\frac{-3}{14}}{\frac{1}{7}} by multiplying -\frac{11}{2} by the reciprocal of \frac{\frac{3}{4}-\frac{5}{7}+\frac{-3}{14}}{\frac{1}{7}}.
\frac{\frac{-11}{7}}{2\left(\frac{3}{4}-\frac{5}{7}+\frac{-3}{14}\right)}
Multiply -11 and \frac{1}{7} to get \frac{-11}{7}.
\frac{-\frac{11}{7}}{2\left(\frac{3}{4}-\frac{5}{7}+\frac{-3}{14}\right)}
Fraction \frac{-11}{7} can be rewritten as -\frac{11}{7} by extracting the negative sign.
\frac{-\frac{11}{7}}{2\left(\frac{21}{28}-\frac{20}{28}+\frac{-3}{14}\right)}
Least common multiple of 4 and 7 is 28. Convert \frac{3}{4} and \frac{5}{7} to fractions with denominator 28.
\frac{-\frac{11}{7}}{2\left(\frac{21-20}{28}+\frac{-3}{14}\right)}
Since \frac{21}{28} and \frac{20}{28} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{11}{7}}{2\left(\frac{1}{28}+\frac{-3}{14}\right)}
Subtract 20 from 21 to get 1.
\frac{-\frac{11}{7}}{2\left(\frac{1}{28}-\frac{3}{14}\right)}
Fraction \frac{-3}{14} can be rewritten as -\frac{3}{14} by extracting the negative sign.
\frac{-\frac{11}{7}}{2\left(\frac{1}{28}-\frac{6}{28}\right)}
Least common multiple of 28 and 14 is 28. Convert \frac{1}{28} and \frac{3}{14} to fractions with denominator 28.
\frac{-\frac{11}{7}}{2\times \frac{1-6}{28}}
Since \frac{1}{28} and \frac{6}{28} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{11}{7}}{2\left(-\frac{5}{28}\right)}
Subtract 6 from 1 to get -5.
\frac{-\frac{11}{7}}{\frac{2\left(-5\right)}{28}}
Express 2\left(-\frac{5}{28}\right) as a single fraction.
\frac{-\frac{11}{7}}{\frac{-10}{28}}
Multiply 2 and -5 to get -10.
\frac{-\frac{11}{7}}{-\frac{5}{14}}
Reduce the fraction \frac{-10}{28} to lowest terms by extracting and canceling out 2.
-\frac{11}{7}\left(-\frac{14}{5}\right)
Divide -\frac{11}{7} by -\frac{5}{14} by multiplying -\frac{11}{7} by the reciprocal of -\frac{5}{14}.
\frac{-11\left(-14\right)}{7\times 5}
Multiply -\frac{11}{7} times -\frac{14}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{154}{35}
Do the multiplications in the fraction \frac{-11\left(-14\right)}{7\times 5}.
\frac{22}{5}
Reduce the fraction \frac{154}{35} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}