Solve for a
\left\{\begin{matrix}a=-\frac{2bx-cy+6c}{y-6}\text{, }&y\neq 6\text{ and }b\neq 0\\a\in \mathrm{R}\text{, }&x=0\text{ and }y=6\text{ and }b\neq 0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\frac{\left(6-y\right)\left(a-c\right)}{2x}\text{, }&a\neq c\text{ and }y\neq 6\text{ and }x\neq 0\\b\neq 0\text{, }&\left(y=6\text{ or }a=c\right)\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(y-6\right)\left(a-c\right)=x\left(-2\right)b
Multiply both sides of the equation by -2b.
ya-yc-6a+6c=x\left(-2\right)b
Use the distributive property to multiply y-6 by a-c.
ya-6a+6c=x\left(-2\right)b+yc
Add yc to both sides.
ya-6a=x\left(-2\right)b+yc-6c
Subtract 6c from both sides.
\left(y-6\right)a=x\left(-2\right)b+yc-6c
Combine all terms containing a.
\left(y-6\right)a=-2bx+cy-6c
The equation is in standard form.
\frac{\left(y-6\right)a}{y-6}=\frac{-2bx+cy-6c}{y-6}
Divide both sides by y-6.
a=\frac{-2bx+cy-6c}{y-6}
Dividing by y-6 undoes the multiplication by y-6.
\left(y-6\right)\left(a-c\right)=x\left(-2\right)b
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by -2b.
ya-yc-6a+6c=x\left(-2\right)b
Use the distributive property to multiply y-6 by a-c.
x\left(-2\right)b=ya-yc-6a+6c
Swap sides so that all variable terms are on the left hand side.
\left(-2x\right)b=ay-cy+6c-6a
The equation is in standard form.
\frac{\left(-2x\right)b}{-2x}=\frac{\left(y-6\right)\left(a-c\right)}{-2x}
Divide both sides by -2x.
b=\frac{\left(y-6\right)\left(a-c\right)}{-2x}
Dividing by -2x undoes the multiplication by -2x.
b=-\frac{\left(y-6\right)\left(a-c\right)}{2x}
Divide \left(-6+y\right)\left(a-c\right) by -2x.
b=-\frac{\left(y-6\right)\left(a-c\right)}{2x}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}