Solve for x
x=-\frac{\left(y-1\right)\left(y+7\right)}{16}
Solve for y (complex solution)
y=-4\sqrt{1-x}-3
y=4\sqrt{1-x}-3
Solve for y
y=-4\sqrt{1-x}-3
y=4\sqrt{1-x}-3\text{, }x\leq 1
Graph
Share
Copied to clipboard
\left(y+3\right)^{2}+16x=16
Multiply both sides of the equation by 16.
y^{2}+6y+9+16x=16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+3\right)^{2}.
6y+9+16x=16-y^{2}
Subtract y^{2} from both sides.
9+16x=16-y^{2}-6y
Subtract 6y from both sides.
16x=16-y^{2}-6y-9
Subtract 9 from both sides.
16x=7-y^{2}-6y
Subtract 9 from 16 to get 7.
16x=7-6y-y^{2}
The equation is in standard form.
\frac{16x}{16}=\frac{\left(1-y\right)\left(y+7\right)}{16}
Divide both sides by 16.
x=\frac{\left(1-y\right)\left(y+7\right)}{16}
Dividing by 16 undoes the multiplication by 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}