Solve for x
x = \frac{\sqrt{2906} + 8}{7} \approx 8.843903984
x=\frac{8-\sqrt{2906}}{7}\approx -6.558189698
Graph
Share
Copied to clipboard
7\left(x-7\right)\left(x+4\right)+5\left(x+7\right)=245
Multiply both sides of the equation by 35, the least common multiple of 5,7.
\left(7x-49\right)\left(x+4\right)+5\left(x+7\right)=245
Use the distributive property to multiply 7 by x-7.
7x^{2}-21x-196+5\left(x+7\right)=245
Use the distributive property to multiply 7x-49 by x+4 and combine like terms.
7x^{2}-21x-196+5x+35=245
Use the distributive property to multiply 5 by x+7.
7x^{2}-16x-196+35=245
Combine -21x and 5x to get -16x.
7x^{2}-16x-161=245
Add -196 and 35 to get -161.
7x^{2}-16x-161-245=0
Subtract 245 from both sides.
7x^{2}-16x-406=0
Subtract 245 from -161 to get -406.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 7\left(-406\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -16 for b, and -406 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 7\left(-406\right)}}{2\times 7}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256-28\left(-406\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-16\right)±\sqrt{256+11368}}{2\times 7}
Multiply -28 times -406.
x=\frac{-\left(-16\right)±\sqrt{11624}}{2\times 7}
Add 256 to 11368.
x=\frac{-\left(-16\right)±2\sqrt{2906}}{2\times 7}
Take the square root of 11624.
x=\frac{16±2\sqrt{2906}}{2\times 7}
The opposite of -16 is 16.
x=\frac{16±2\sqrt{2906}}{14}
Multiply 2 times 7.
x=\frac{2\sqrt{2906}+16}{14}
Now solve the equation x=\frac{16±2\sqrt{2906}}{14} when ± is plus. Add 16 to 2\sqrt{2906}.
x=\frac{\sqrt{2906}+8}{7}
Divide 16+2\sqrt{2906} by 14.
x=\frac{16-2\sqrt{2906}}{14}
Now solve the equation x=\frac{16±2\sqrt{2906}}{14} when ± is minus. Subtract 2\sqrt{2906} from 16.
x=\frac{8-\sqrt{2906}}{7}
Divide 16-2\sqrt{2906} by 14.
x=\frac{\sqrt{2906}+8}{7} x=\frac{8-\sqrt{2906}}{7}
The equation is now solved.
7\left(x-7\right)\left(x+4\right)+5\left(x+7\right)=245
Multiply both sides of the equation by 35, the least common multiple of 5,7.
\left(7x-49\right)\left(x+4\right)+5\left(x+7\right)=245
Use the distributive property to multiply 7 by x-7.
7x^{2}-21x-196+5\left(x+7\right)=245
Use the distributive property to multiply 7x-49 by x+4 and combine like terms.
7x^{2}-21x-196+5x+35=245
Use the distributive property to multiply 5 by x+7.
7x^{2}-16x-196+35=245
Combine -21x and 5x to get -16x.
7x^{2}-16x-161=245
Add -196 and 35 to get -161.
7x^{2}-16x=245+161
Add 161 to both sides.
7x^{2}-16x=406
Add 245 and 161 to get 406.
\frac{7x^{2}-16x}{7}=\frac{406}{7}
Divide both sides by 7.
x^{2}-\frac{16}{7}x=\frac{406}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{16}{7}x=58
Divide 406 by 7.
x^{2}-\frac{16}{7}x+\left(-\frac{8}{7}\right)^{2}=58+\left(-\frac{8}{7}\right)^{2}
Divide -\frac{16}{7}, the coefficient of the x term, by 2 to get -\frac{8}{7}. Then add the square of -\frac{8}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{16}{7}x+\frac{64}{49}=58+\frac{64}{49}
Square -\frac{8}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{16}{7}x+\frac{64}{49}=\frac{2906}{49}
Add 58 to \frac{64}{49}.
\left(x-\frac{8}{7}\right)^{2}=\frac{2906}{49}
Factor x^{2}-\frac{16}{7}x+\frac{64}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{8}{7}\right)^{2}}=\sqrt{\frac{2906}{49}}
Take the square root of both sides of the equation.
x-\frac{8}{7}=\frac{\sqrt{2906}}{7} x-\frac{8}{7}=-\frac{\sqrt{2906}}{7}
Simplify.
x=\frac{\sqrt{2906}+8}{7} x=\frac{8-\sqrt{2906}}{7}
Add \frac{8}{7} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}