Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-5\right)^{2}+2x=6
Multiply both sides of the equation by 2.
x^{2}-10x+25+2x=6
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
x^{2}-8x+25=6
Combine -10x and 2x to get -8x.
x^{2}-8x+25-6=0
Subtract 6 from both sides.
x^{2}-8x+19=0
Subtract 6 from 25 to get 19.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 19}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and 19 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 19}}{2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-76}}{2}
Multiply -4 times 19.
x=\frac{-\left(-8\right)±\sqrt{-12}}{2}
Add 64 to -76.
x=\frac{-\left(-8\right)±2\sqrt{3}i}{2}
Take the square root of -12.
x=\frac{8±2\sqrt{3}i}{2}
The opposite of -8 is 8.
x=\frac{8+2\sqrt{3}i}{2}
Now solve the equation x=\frac{8±2\sqrt{3}i}{2} when ± is plus. Add 8 to 2i\sqrt{3}.
x=4+\sqrt{3}i
Divide 8+2i\sqrt{3} by 2.
x=\frac{-2\sqrt{3}i+8}{2}
Now solve the equation x=\frac{8±2\sqrt{3}i}{2} when ± is minus. Subtract 2i\sqrt{3} from 8.
x=-\sqrt{3}i+4
Divide 8-2i\sqrt{3} by 2.
x=4+\sqrt{3}i x=-\sqrt{3}i+4
The equation is now solved.
\left(x-5\right)^{2}+2x=6
Multiply both sides of the equation by 2.
x^{2}-10x+25+2x=6
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
x^{2}-8x+25=6
Combine -10x and 2x to get -8x.
x^{2}-8x=6-25
Subtract 25 from both sides.
x^{2}-8x=-19
Subtract 25 from 6 to get -19.
x^{2}-8x+\left(-4\right)^{2}=-19+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-19+16
Square -4.
x^{2}-8x+16=-3
Add -19 to 16.
\left(x-4\right)^{2}=-3
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{-3}
Take the square root of both sides of the equation.
x-4=\sqrt{3}i x-4=-\sqrt{3}i
Simplify.
x=4+\sqrt{3}i x=-\sqrt{3}i+4
Add 4 to both sides of the equation.