Solve for x
x=\frac{2\left(2y+7\right)}{y+42}
y\neq 0\text{ and }y\neq -42
Solve for y
y=-\frac{14\left(3x-1\right)}{x-4}
x\neq \frac{1}{3}\text{ and }x\neq 4
Graph
Quiz
Linear Equation
5 problems similar to:
\frac { ( x - 4 ) } { ( - 3 x + 1 ) } = \frac { 14 } { y }
Share
Copied to clipboard
-y\left(x-4\right)=\left(3x-1\right)\times 14
Variable x cannot be equal to \frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by y\left(3x-1\right), the least common multiple of -3x+1,y.
-yx+4y=\left(3x-1\right)\times 14
Use the distributive property to multiply -y by x-4.
-yx+4y=42x-14
Use the distributive property to multiply 3x-1 by 14.
-yx+4y-42x=-14
Subtract 42x from both sides.
-yx-42x=-14-4y
Subtract 4y from both sides.
\left(-y-42\right)x=-14-4y
Combine all terms containing x.
\left(-y-42\right)x=-4y-14
The equation is in standard form.
\frac{\left(-y-42\right)x}{-y-42}=\frac{-4y-14}{-y-42}
Divide both sides by -y-42.
x=\frac{-4y-14}{-y-42}
Dividing by -y-42 undoes the multiplication by -y-42.
x=\frac{2\left(2y+7\right)}{y+42}
Divide -4y-14 by -y-42.
x=\frac{2\left(2y+7\right)}{y+42}\text{, }x\neq \frac{1}{3}
Variable x cannot be equal to \frac{1}{3}.
-y\left(x-4\right)=\left(3x-1\right)\times 14
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y\left(3x-1\right), the least common multiple of -3x+1,y.
-yx+4y=\left(3x-1\right)\times 14
Use the distributive property to multiply -y by x-4.
-yx+4y=42x-14
Use the distributive property to multiply 3x-1 by 14.
\left(-x+4\right)y=42x-14
Combine all terms containing y.
\left(4-x\right)y=42x-14
The equation is in standard form.
\frac{\left(4-x\right)y}{4-x}=\frac{42x-14}{4-x}
Divide both sides by -x+4.
y=\frac{42x-14}{4-x}
Dividing by -x+4 undoes the multiplication by -x+4.
y=\frac{14\left(3x-1\right)}{4-x}
Divide 42x-14 by -x+4.
y=\frac{14\left(3x-1\right)}{4-x}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}