Solve for x
x = \frac{6}{5} = 1\frac{1}{5} = 1.2
Graph
Share
Copied to clipboard
-13\left(x-4\right)=14\left(3x-1\right)
Variable x cannot be equal to \frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by 13\left(3x-1\right), the least common multiple of -3x+1,13.
-13x+52=14\left(3x-1\right)
Use the distributive property to multiply -13 by x-4.
-13x+52=42x-14
Use the distributive property to multiply 14 by 3x-1.
-13x+52-42x=-14
Subtract 42x from both sides.
-55x+52=-14
Combine -13x and -42x to get -55x.
-55x=-14-52
Subtract 52 from both sides.
-55x=-66
Subtract 52 from -14 to get -66.
x=\frac{-66}{-55}
Divide both sides by -55.
x=\frac{6}{5}
Reduce the fraction \frac{-66}{-55} to lowest terms by extracting and canceling out -11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}