Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-3\right)^{2}+1-2\left(x-3\right)^{2}=0
Variable x cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)^{2}.
x^{2}-6x+9+1-2\left(x-3\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+10-2\left(x-3\right)^{2}=0
Add 9 and 1 to get 10.
x^{2}-6x+10-2\left(x^{2}-6x+9\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+10-2x^{2}+12x-18=0
Use the distributive property to multiply -2 by x^{2}-6x+9.
-x^{2}-6x+10+12x-18=0
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+6x+10-18=0
Combine -6x and 12x to get 6x.
-x^{2}+6x-8=0
Subtract 18 from 10 to get -8.
a+b=6 ab=-\left(-8\right)=8
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-8. To find a and b, set up a system to be solved.
1,8 2,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 8.
1+8=9 2+4=6
Calculate the sum for each pair.
a=4 b=2
The solution is the pair that gives sum 6.
\left(-x^{2}+4x\right)+\left(2x-8\right)
Rewrite -x^{2}+6x-8 as \left(-x^{2}+4x\right)+\left(2x-8\right).
-x\left(x-4\right)+2\left(x-4\right)
Factor out -x in the first and 2 in the second group.
\left(x-4\right)\left(-x+2\right)
Factor out common term x-4 by using distributive property.
x=4 x=2
To find equation solutions, solve x-4=0 and -x+2=0.
\left(x-3\right)^{2}+1-2\left(x-3\right)^{2}=0
Variable x cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)^{2}.
x^{2}-6x+9+1-2\left(x-3\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+10-2\left(x-3\right)^{2}=0
Add 9 and 1 to get 10.
x^{2}-6x+10-2\left(x^{2}-6x+9\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+10-2x^{2}+12x-18=0
Use the distributive property to multiply -2 by x^{2}-6x+9.
-x^{2}-6x+10+12x-18=0
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+6x+10-18=0
Combine -6x and 12x to get 6x.
-x^{2}+6x-8=0
Subtract 18 from 10 to get -8.
x=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\left(-8\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 6 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-1\right)\left(-8\right)}}{2\left(-1\right)}
Square 6.
x=\frac{-6±\sqrt{36+4\left(-8\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-6±\sqrt{36-32}}{2\left(-1\right)}
Multiply 4 times -8.
x=\frac{-6±\sqrt{4}}{2\left(-1\right)}
Add 36 to -32.
x=\frac{-6±2}{2\left(-1\right)}
Take the square root of 4.
x=\frac{-6±2}{-2}
Multiply 2 times -1.
x=-\frac{4}{-2}
Now solve the equation x=\frac{-6±2}{-2} when ± is plus. Add -6 to 2.
x=2
Divide -4 by -2.
x=-\frac{8}{-2}
Now solve the equation x=\frac{-6±2}{-2} when ± is minus. Subtract 2 from -6.
x=4
Divide -8 by -2.
x=2 x=4
The equation is now solved.
\left(x-3\right)^{2}+1-2\left(x-3\right)^{2}=0
Variable x cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)^{2}.
x^{2}-6x+9+1-2\left(x-3\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+10-2\left(x-3\right)^{2}=0
Add 9 and 1 to get 10.
x^{2}-6x+10-2\left(x^{2}-6x+9\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+10-2x^{2}+12x-18=0
Use the distributive property to multiply -2 by x^{2}-6x+9.
-x^{2}-6x+10+12x-18=0
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+6x+10-18=0
Combine -6x and 12x to get 6x.
-x^{2}+6x-8=0
Subtract 18 from 10 to get -8.
-x^{2}+6x=8
Add 8 to both sides. Anything plus zero gives itself.
\frac{-x^{2}+6x}{-1}=\frac{8}{-1}
Divide both sides by -1.
x^{2}+\frac{6}{-1}x=\frac{8}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-6x=\frac{8}{-1}
Divide 6 by -1.
x^{2}-6x=-8
Divide 8 by -1.
x^{2}-6x+\left(-3\right)^{2}=-8+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-8+9
Square -3.
x^{2}-6x+9=1
Add -8 to 9.
\left(x-3\right)^{2}=1
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x-3=1 x-3=-1
Simplify.
x=4 x=2
Add 3 to both sides of the equation.