Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x-2\right)^{2}+5x+6=2\left(x+3\right)\left(x-3\right)+36
Multiply both sides of the equation by 6, the least common multiple of 2,6,3.
3\left(x^{2}-4x+4\right)+5x+6=2\left(x+3\right)\left(x-3\right)+36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
3x^{2}-12x+12+5x+6=2\left(x+3\right)\left(x-3\right)+36
Use the distributive property to multiply 3 by x^{2}-4x+4.
3x^{2}-7x+12+6=2\left(x+3\right)\left(x-3\right)+36
Combine -12x and 5x to get -7x.
3x^{2}-7x+18=2\left(x+3\right)\left(x-3\right)+36
Add 12 and 6 to get 18.
3x^{2}-7x+18=\left(2x+6\right)\left(x-3\right)+36
Use the distributive property to multiply 2 by x+3.
3x^{2}-7x+18=2x^{2}-18+36
Use the distributive property to multiply 2x+6 by x-3 and combine like terms.
3x^{2}-7x+18=2x^{2}+18
Add -18 and 36 to get 18.
3x^{2}-7x+18-2x^{2}=18
Subtract 2x^{2} from both sides.
x^{2}-7x+18=18
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-7x+18-18=0
Subtract 18 from both sides.
x^{2}-7x=0
Subtract 18 from 18 to get 0.
x\left(x-7\right)=0
Factor out x.
x=0 x=7
To find equation solutions, solve x=0 and x-7=0.
3\left(x-2\right)^{2}+5x+6=2\left(x+3\right)\left(x-3\right)+36
Multiply both sides of the equation by 6, the least common multiple of 2,6,3.
3\left(x^{2}-4x+4\right)+5x+6=2\left(x+3\right)\left(x-3\right)+36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
3x^{2}-12x+12+5x+6=2\left(x+3\right)\left(x-3\right)+36
Use the distributive property to multiply 3 by x^{2}-4x+4.
3x^{2}-7x+12+6=2\left(x+3\right)\left(x-3\right)+36
Combine -12x and 5x to get -7x.
3x^{2}-7x+18=2\left(x+3\right)\left(x-3\right)+36
Add 12 and 6 to get 18.
3x^{2}-7x+18=\left(2x+6\right)\left(x-3\right)+36
Use the distributive property to multiply 2 by x+3.
3x^{2}-7x+18=2x^{2}-18+36
Use the distributive property to multiply 2x+6 by x-3 and combine like terms.
3x^{2}-7x+18=2x^{2}+18
Add -18 and 36 to get 18.
3x^{2}-7x+18-2x^{2}=18
Subtract 2x^{2} from both sides.
x^{2}-7x+18=18
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-7x+18-18=0
Subtract 18 from both sides.
x^{2}-7x=0
Subtract 18 from 18 to get 0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -7 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±7}{2}
Take the square root of \left(-7\right)^{2}.
x=\frac{7±7}{2}
The opposite of -7 is 7.
x=\frac{14}{2}
Now solve the equation x=\frac{7±7}{2} when ± is plus. Add 7 to 7.
x=7
Divide 14 by 2.
x=\frac{0}{2}
Now solve the equation x=\frac{7±7}{2} when ± is minus. Subtract 7 from 7.
x=0
Divide 0 by 2.
x=7 x=0
The equation is now solved.
3\left(x-2\right)^{2}+5x+6=2\left(x+3\right)\left(x-3\right)+36
Multiply both sides of the equation by 6, the least common multiple of 2,6,3.
3\left(x^{2}-4x+4\right)+5x+6=2\left(x+3\right)\left(x-3\right)+36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
3x^{2}-12x+12+5x+6=2\left(x+3\right)\left(x-3\right)+36
Use the distributive property to multiply 3 by x^{2}-4x+4.
3x^{2}-7x+12+6=2\left(x+3\right)\left(x-3\right)+36
Combine -12x and 5x to get -7x.
3x^{2}-7x+18=2\left(x+3\right)\left(x-3\right)+36
Add 12 and 6 to get 18.
3x^{2}-7x+18=\left(2x+6\right)\left(x-3\right)+36
Use the distributive property to multiply 2 by x+3.
3x^{2}-7x+18=2x^{2}-18+36
Use the distributive property to multiply 2x+6 by x-3 and combine like terms.
3x^{2}-7x+18=2x^{2}+18
Add -18 and 36 to get 18.
3x^{2}-7x+18-2x^{2}=18
Subtract 2x^{2} from both sides.
x^{2}-7x+18=18
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-7x+18-18=0
Subtract 18 from both sides.
x^{2}-7x=0
Subtract 18 from 18 to get 0.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{7}{2}\right)^{2}=\frac{49}{4}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{7}{2} x-\frac{7}{2}=-\frac{7}{2}
Simplify.
x=7 x=0
Add \frac{7}{2} to both sides of the equation.