Solve for x (complex solution)
x\in \mathrm{C}
Solve for x
x\in \mathrm{R}
Graph
Share
Copied to clipboard
\left(x-\frac{1}{2}\right)^{2}-\left(\frac{2x-3}{2}-1\right)^{2}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Multiply both sides of the equation by 2.
x^{2}-x+\frac{1}{4}-\left(\frac{2x-3}{2}-1\right)^{2}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{1}{2}\right)^{2}.
x^{2}-x+\frac{1}{4}-\left(\left(\frac{2x-3}{2}\right)^{2}-2\times \frac{2x-3}{2}+1\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{2x-3}{2}-1\right)^{2}.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}-2\times \frac{2x-3}{2}+1\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
To raise \frac{2x-3}{2} to a power, raise both numerator and denominator to the power and then divide.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}+\frac{-2\left(2x-3\right)}{2}+1\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Express -2\times \frac{2x-3}{2} as a single fraction.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}-\left(2x-3\right)+1\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Cancel out 2 and 2.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}-2x+3+1\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
To find the opposite of 2x-3, find the opposite of each term.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}-2x+4\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Add 3 and 1 to get 4.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}+\frac{\left(-2x+4\right)\times 2^{2}}{2^{2}}\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -2x+4 times \frac{2^{2}}{2^{2}}.
x^{2}-x+\frac{1}{4}-\frac{\left(2x-3\right)^{2}+\left(-2x+4\right)\times 2^{2}}{2^{2}}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Since \frac{\left(2x-3\right)^{2}}{2^{2}} and \frac{\left(-2x+4\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
x^{2}-x+\frac{1}{4}-\frac{4x^{2}-12x+9-8x+16}{2^{2}}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Do the multiplications in \left(2x-3\right)^{2}+\left(-2x+4\right)\times 2^{2}.
x^{2}-x+\frac{1}{4}-\frac{4x^{2}-20x+25}{2^{2}}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Combine like terms in 4x^{2}-12x+9-8x+16.
x^{2}-x+\frac{1}{4}-\frac{4x^{2}-20x+25}{4}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Calculate 2 to the power of 2 and get 4.
x^{2}-x+\frac{1+4x^{2}-20x+25}{4}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Since \frac{1}{4} and \frac{4x^{2}-20x+25}{4} have the same denominator, add them by adding their numerators.
x^{2}-x+\frac{26+4x^{2}-20x}{4}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Combine like terms in 1+4x^{2}-20x+25.
x^{2}-x+\frac{26+4x^{2}-20x}{4}+6\left(-\frac{1}{3}\right)=4\left(x-2\right)
Subtract 1 from \frac{2}{3} to get -\frac{1}{3}.
x^{2}-x+\frac{26+4x^{2}-20x}{4}-2=4\left(x-2\right)
Multiply 6 and -\frac{1}{3} to get -2.
x^{2}-x+\frac{26+4x^{2}-20x}{4}-2=4x-8
Use the distributive property to multiply 4 by x-2.
x^{2}-x+\frac{13}{2}+x^{2}-5x-2=4x-8
Divide each term of 26+4x^{2}-20x by 4 to get \frac{13}{2}+x^{2}-5x.
2x^{2}-x+\frac{13}{2}-5x-2=4x-8
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-6x+\frac{13}{2}-2=4x-8
Combine -x and -5x to get -6x.
2x^{2}-6x+\frac{9}{2}=4x-8
Subtract 2 from \frac{13}{2} to get \frac{9}{2}.
2x^{2}-6x+\frac{9}{2}-4x=-8
Subtract 4x from both sides.
2x^{2}-10x+\frac{9}{2}=-8
Combine -6x and -4x to get -10x.
2x^{2}-10x+\frac{9}{2}+8=0
Add 8 to both sides.
2x^{2}-10x+\frac{25}{2}=0
Add \frac{9}{2} and 8 to get \frac{25}{2}.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 2\times \frac{25}{2}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -10 for b, and \frac{25}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 2\times \frac{25}{2}}}{2\times 2}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-8\times \frac{25}{2}}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-10\right)±\sqrt{100-100}}{2\times 2}
Multiply -8 times \frac{25}{2}.
x=\frac{-\left(-10\right)±\sqrt{0}}{2\times 2}
Add 100 to -100.
x=-\frac{-10}{2\times 2}
Take the square root of 0.
x=\frac{10}{2\times 2}
The opposite of -10 is 10.
x=\frac{10}{4}
Multiply 2 times 2.
x=\frac{5}{2}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
\left(x-\frac{1}{2}\right)^{2}-\left(\frac{2x-3}{2}-1\right)^{2}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Multiply both sides of the equation by 2.
x^{2}-x+\frac{1}{4}-\left(\frac{2x-3}{2}-1\right)^{2}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{1}{2}\right)^{2}.
x^{2}-x+\frac{1}{4}-\left(\left(\frac{2x-3}{2}\right)^{2}-2\times \frac{2x-3}{2}+1\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{2x-3}{2}-1\right)^{2}.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}-2\times \frac{2x-3}{2}+1\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
To raise \frac{2x-3}{2} to a power, raise both numerator and denominator to the power and then divide.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}+\frac{-2\left(2x-3\right)}{2}+1\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Express -2\times \frac{2x-3}{2} as a single fraction.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}-\left(2x-3\right)+1\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Cancel out 2 and 2.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}-2x+3+1\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
To find the opposite of 2x-3, find the opposite of each term.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}-2x+4\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Add 3 and 1 to get 4.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}+\frac{\left(-2x+4\right)\times 2^{2}}{2^{2}}\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -2x+4 times \frac{2^{2}}{2^{2}}.
x^{2}-x+\frac{1}{4}-\frac{\left(2x-3\right)^{2}+\left(-2x+4\right)\times 2^{2}}{2^{2}}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Since \frac{\left(2x-3\right)^{2}}{2^{2}} and \frac{\left(-2x+4\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
x^{2}-x+\frac{1}{4}-\frac{4x^{2}-12x+9-8x+16}{2^{2}}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Do the multiplications in \left(2x-3\right)^{2}+\left(-2x+4\right)\times 2^{2}.
x^{2}-x+\frac{1}{4}-\frac{4x^{2}-20x+25}{2^{2}}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Combine like terms in 4x^{2}-12x+9-8x+16.
x^{2}-x+\frac{1}{4}-\frac{4x^{2}-20x+25}{4}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Calculate 2 to the power of 2 and get 4.
x^{2}-x+\frac{1+4x^{2}-20x+25}{4}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Since \frac{1}{4} and \frac{4x^{2}-20x+25}{4} have the same denominator, add them by adding their numerators.
x^{2}-x+\frac{26+4x^{2}-20x}{4}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Combine like terms in 1+4x^{2}-20x+25.
x^{2}-x+\frac{26+4x^{2}-20x}{4}+6\left(-\frac{1}{3}\right)=4\left(x-2\right)
Subtract 1 from \frac{2}{3} to get -\frac{1}{3}.
x^{2}-x+\frac{26+4x^{2}-20x}{4}-2=4\left(x-2\right)
Multiply 6 and -\frac{1}{3} to get -2.
x^{2}-x+\frac{26+4x^{2}-20x}{4}-2=4x-8
Use the distributive property to multiply 4 by x-2.
x^{2}-x+\frac{13}{2}+x^{2}-5x-2=4x-8
Divide each term of 26+4x^{2}-20x by 4 to get \frac{13}{2}+x^{2}-5x.
2x^{2}-x+\frac{13}{2}-5x-2=4x-8
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-6x+\frac{13}{2}-2=4x-8
Combine -x and -5x to get -6x.
2x^{2}-6x+\frac{9}{2}=4x-8
Subtract 2 from \frac{13}{2} to get \frac{9}{2}.
2x^{2}-6x+\frac{9}{2}-4x=-8
Subtract 4x from both sides.
2x^{2}-10x+\frac{9}{2}=-8
Combine -6x and -4x to get -10x.
2x^{2}-10x=-8-\frac{9}{2}
Subtract \frac{9}{2} from both sides.
2x^{2}-10x=-\frac{25}{2}
Subtract \frac{9}{2} from -8 to get -\frac{25}{2}.
\frac{2x^{2}-10x}{2}=-\frac{\frac{25}{2}}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{10}{2}\right)x=-\frac{\frac{25}{2}}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-5x=-\frac{\frac{25}{2}}{2}
Divide -10 by 2.
x^{2}-5x=-\frac{25}{4}
Divide -\frac{25}{2} by 2.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-\frac{25}{4}+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=\frac{-25+25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=0
Add -\frac{25}{4} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{2}\right)^{2}=0
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-\frac{5}{2}=0 x-\frac{5}{2}=0
Simplify.
x=\frac{5}{2} x=\frac{5}{2}
Add \frac{5}{2} to both sides of the equation.
x=\frac{5}{2}
The equation is now solved. Solutions are the same.
\left(x-\frac{1}{2}\right)^{2}-\left(\frac{2x-3}{2}-1\right)^{2}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Multiply both sides of the equation by 2.
x^{2}-x+\frac{1}{4}-\left(\frac{2x-3}{2}-1\right)^{2}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{1}{2}\right)^{2}.
x^{2}-x+\frac{1}{4}-\left(\left(\frac{2x-3}{2}\right)^{2}-2\times \frac{2x-3}{2}+1\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{2x-3}{2}-1\right)^{2}.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}-2\times \frac{2x-3}{2}+1\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
To raise \frac{2x-3}{2} to a power, raise both numerator and denominator to the power and then divide.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}+\frac{-2\left(2x-3\right)}{2}+1\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Express -2\times \frac{2x-3}{2} as a single fraction.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}-\left(2x-3\right)+1\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Cancel out 2 and 2.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}-2x+3+1\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
To find the opposite of 2x-3, find the opposite of each term.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}-2x+4\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Add 3 and 1 to get 4.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}+\frac{\left(-2x+4\right)\times 2^{2}}{2^{2}}\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -2x+4 times \frac{2^{2}}{2^{2}}.
x^{2}-x+\frac{1}{4}-\frac{\left(2x-3\right)^{2}+\left(-2x+4\right)\times 2^{2}}{2^{2}}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Since \frac{\left(2x-3\right)^{2}}{2^{2}} and \frac{\left(-2x+4\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
x^{2}-x+\frac{1}{4}-\frac{4x^{2}-12x+9-8x+16}{2^{2}}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Do the multiplications in \left(2x-3\right)^{2}+\left(-2x+4\right)\times 2^{2}.
x^{2}-x+\frac{1}{4}-\frac{4x^{2}-20x+25}{2^{2}}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Combine like terms in 4x^{2}-12x+9-8x+16.
x^{2}-x+\frac{1}{4}-\frac{4x^{2}-20x+25}{4}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Calculate 2 to the power of 2 and get 4.
x^{2}-x+\frac{1+4x^{2}-20x+25}{4}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Since \frac{1}{4} and \frac{4x^{2}-20x+25}{4} have the same denominator, add them by adding their numerators.
x^{2}-x+\frac{26+4x^{2}-20x}{4}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Combine like terms in 1+4x^{2}-20x+25.
x^{2}-x+\frac{26+4x^{2}-20x}{4}+6\left(-\frac{1}{3}\right)=4\left(x-2\right)
Subtract 1 from \frac{2}{3} to get -\frac{1}{3}.
x^{2}-x+\frac{26+4x^{2}-20x}{4}-2=4\left(x-2\right)
Multiply 6 and -\frac{1}{3} to get -2.
x^{2}-x+\frac{26+4x^{2}-20x}{4}-2=4x-8
Use the distributive property to multiply 4 by x-2.
x^{2}-x+\frac{13}{2}+x^{2}-5x-2=4x-8
Divide each term of 26+4x^{2}-20x by 4 to get \frac{13}{2}+x^{2}-5x.
2x^{2}-x+\frac{13}{2}-5x-2=4x-8
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-6x+\frac{13}{2}-2=4x-8
Combine -x and -5x to get -6x.
2x^{2}-6x+\frac{9}{2}=4x-8
Subtract 2 from \frac{13}{2} to get \frac{9}{2}.
2x^{2}-6x+\frac{9}{2}-4x=-8
Subtract 4x from both sides.
2x^{2}-10x+\frac{9}{2}=-8
Combine -6x and -4x to get -10x.
2x^{2}-10x+\frac{9}{2}+8=0
Add 8 to both sides.
2x^{2}-10x+\frac{25}{2}=0
Add \frac{9}{2} and 8 to get \frac{25}{2}.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 2\times \frac{25}{2}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -10 for b, and \frac{25}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 2\times \frac{25}{2}}}{2\times 2}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-8\times \frac{25}{2}}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-10\right)±\sqrt{100-100}}{2\times 2}
Multiply -8 times \frac{25}{2}.
x=\frac{-\left(-10\right)±\sqrt{0}}{2\times 2}
Add 100 to -100.
x=-\frac{-10}{2\times 2}
Take the square root of 0.
x=\frac{10}{2\times 2}
The opposite of -10 is 10.
x=\frac{10}{4}
Multiply 2 times 2.
x=\frac{5}{2}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
\left(x-\frac{1}{2}\right)^{2}-\left(\frac{2x-3}{2}-1\right)^{2}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Multiply both sides of the equation by 2.
x^{2}-x+\frac{1}{4}-\left(\frac{2x-3}{2}-1\right)^{2}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{1}{2}\right)^{2}.
x^{2}-x+\frac{1}{4}-\left(\left(\frac{2x-3}{2}\right)^{2}-2\times \frac{2x-3}{2}+1\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{2x-3}{2}-1\right)^{2}.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}-2\times \frac{2x-3}{2}+1\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
To raise \frac{2x-3}{2} to a power, raise both numerator and denominator to the power and then divide.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}+\frac{-2\left(2x-3\right)}{2}+1\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Express -2\times \frac{2x-3}{2} as a single fraction.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}-\left(2x-3\right)+1\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Cancel out 2 and 2.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}-2x+3+1\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
To find the opposite of 2x-3, find the opposite of each term.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}-2x+4\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Add 3 and 1 to get 4.
x^{2}-x+\frac{1}{4}-\left(\frac{\left(2x-3\right)^{2}}{2^{2}}+\frac{\left(-2x+4\right)\times 2^{2}}{2^{2}}\right)+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -2x+4 times \frac{2^{2}}{2^{2}}.
x^{2}-x+\frac{1}{4}-\frac{\left(2x-3\right)^{2}+\left(-2x+4\right)\times 2^{2}}{2^{2}}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Since \frac{\left(2x-3\right)^{2}}{2^{2}} and \frac{\left(-2x+4\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
x^{2}-x+\frac{1}{4}-\frac{4x^{2}-12x+9-8x+16}{2^{2}}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Do the multiplications in \left(2x-3\right)^{2}+\left(-2x+4\right)\times 2^{2}.
x^{2}-x+\frac{1}{4}-\frac{4x^{2}-20x+25}{2^{2}}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Combine like terms in 4x^{2}-12x+9-8x+16.
x^{2}-x+\frac{1}{4}-\frac{4x^{2}-20x+25}{4}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Calculate 2 to the power of 2 and get 4.
x^{2}-x+\frac{1+4x^{2}-20x+25}{4}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Since \frac{1}{4} and \frac{4x^{2}-20x+25}{4} have the same denominator, add them by adding their numerators.
x^{2}-x+\frac{26+4x^{2}-20x}{4}+6\left(\frac{2}{3}-1\right)=4\left(x-2\right)
Combine like terms in 1+4x^{2}-20x+25.
x^{2}-x+\frac{26+4x^{2}-20x}{4}+6\left(-\frac{1}{3}\right)=4\left(x-2\right)
Subtract 1 from \frac{2}{3} to get -\frac{1}{3}.
x^{2}-x+\frac{26+4x^{2}-20x}{4}-2=4\left(x-2\right)
Multiply 6 and -\frac{1}{3} to get -2.
x^{2}-x+\frac{26+4x^{2}-20x}{4}-2=4x-8
Use the distributive property to multiply 4 by x-2.
x^{2}-x+\frac{13}{2}+x^{2}-5x-2=4x-8
Divide each term of 26+4x^{2}-20x by 4 to get \frac{13}{2}+x^{2}-5x.
2x^{2}-x+\frac{13}{2}-5x-2=4x-8
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-6x+\frac{13}{2}-2=4x-8
Combine -x and -5x to get -6x.
2x^{2}-6x+\frac{9}{2}=4x-8
Subtract 2 from \frac{13}{2} to get \frac{9}{2}.
2x^{2}-6x+\frac{9}{2}-4x=-8
Subtract 4x from both sides.
2x^{2}-10x+\frac{9}{2}=-8
Combine -6x and -4x to get -10x.
2x^{2}-10x=-8-\frac{9}{2}
Subtract \frac{9}{2} from both sides.
2x^{2}-10x=-\frac{25}{2}
Subtract \frac{9}{2} from -8 to get -\frac{25}{2}.
\frac{2x^{2}-10x}{2}=-\frac{\frac{25}{2}}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{10}{2}\right)x=-\frac{\frac{25}{2}}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-5x=-\frac{\frac{25}{2}}{2}
Divide -10 by 2.
x^{2}-5x=-\frac{25}{4}
Divide -\frac{25}{2} by 2.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-\frac{25}{4}+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=\frac{-25+25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=0
Add -\frac{25}{4} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{2}\right)^{2}=0
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-\frac{5}{2}=0 x-\frac{5}{2}=0
Simplify.
x=\frac{5}{2} x=\frac{5}{2}
Add \frac{5}{2} to both sides of the equation.
x=\frac{5}{2}
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}