Evaluate
\frac{\left(x-2\right)\left(x+1\right)\left(x^{2}+x+2\right)}{4\left(3-x\right)}
Expand
-\frac{x^{4}-x^{2}-4x-4}{4\left(x-3\right)}
Graph
Share
Copied to clipboard
\frac{\frac{x^{4}-x^{2}-4x-4}{x-2}\left(x+1\right)}{\left(x+1\right)\times \frac{4^{2}-4x-4}{x-2}}
Divide \frac{\frac{x^{4}-x^{2}-4x-4}{x-2}}{x+1} by \frac{\frac{4^{2}-4x-4}{x-2}}{x+1} by multiplying \frac{\frac{x^{4}-x^{2}-4x-4}{x-2}}{x+1} by the reciprocal of \frac{\frac{4^{2}-4x-4}{x-2}}{x+1}.
\frac{\frac{\left(x-2\right)\left(x+1\right)\left(x^{2}+x+2\right)}{x-2}\left(x+1\right)}{\left(x+1\right)\times \frac{4^{2}-4x-4}{x-2}}
Factor the expressions that are not already factored in \frac{x^{4}-x^{2}-4x-4}{x-2}.
\frac{\left(x+1\right)\left(x^{2}+x+2\right)\left(x+1\right)}{\left(x+1\right)\times \frac{4^{2}-4x-4}{x-2}}
Cancel out x-2 in both numerator and denominator.
\frac{\left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right)}{\left(x+1\right)\times \frac{4^{2}-4x-4}{x-2}}
Expand the expression.
\frac{\left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right)}{\left(x+1\right)\times \frac{16-4x-4}{x-2}}
Calculate 4 to the power of 2 and get 16.
\frac{\left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right)}{\left(x+1\right)\times \frac{12-4x}{x-2}}
Subtract 4 from 16 to get 12.
\frac{\left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right)}{\frac{\left(x+1\right)\left(12-4x\right)}{x-2}}
Express \left(x+1\right)\times \frac{12-4x}{x-2} as a single fraction.
\frac{\left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(12-4x\right)}
Divide \left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right) by \frac{\left(x+1\right)\left(12-4x\right)}{x-2} by multiplying \left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right) by the reciprocal of \frac{\left(x+1\right)\left(12-4x\right)}{x-2}.
\frac{\left(x-2\right)\left(x^{3}+2x^{2}+3x+2\right)}{-4x+12}
Cancel out x+1 in both numerator and denominator.
\frac{x^{4}-x^{2}-4x-4}{-4x+12}
Use the distributive property to multiply x-2 by x^{3}+2x^{2}+3x+2 and combine like terms.
\frac{\frac{x^{4}-x^{2}-4x-4}{x-2}\left(x+1\right)}{\left(x+1\right)\times \frac{4^{2}-4x-4}{x-2}}
Divide \frac{\frac{x^{4}-x^{2}-4x-4}{x-2}}{x+1} by \frac{\frac{4^{2}-4x-4}{x-2}}{x+1} by multiplying \frac{\frac{x^{4}-x^{2}-4x-4}{x-2}}{x+1} by the reciprocal of \frac{\frac{4^{2}-4x-4}{x-2}}{x+1}.
\frac{\frac{\left(x-2\right)\left(x+1\right)\left(x^{2}+x+2\right)}{x-2}\left(x+1\right)}{\left(x+1\right)\times \frac{4^{2}-4x-4}{x-2}}
Factor the expressions that are not already factored in \frac{x^{4}-x^{2}-4x-4}{x-2}.
\frac{\left(x+1\right)\left(x^{2}+x+2\right)\left(x+1\right)}{\left(x+1\right)\times \frac{4^{2}-4x-4}{x-2}}
Cancel out x-2 in both numerator and denominator.
\frac{\left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right)}{\left(x+1\right)\times \frac{4^{2}-4x-4}{x-2}}
Expand the expression.
\frac{\left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right)}{\left(x+1\right)\times \frac{16-4x-4}{x-2}}
Calculate 4 to the power of 2 and get 16.
\frac{\left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right)}{\left(x+1\right)\times \frac{12-4x}{x-2}}
Subtract 4 from 16 to get 12.
\frac{\left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right)}{\frac{\left(x+1\right)\left(12-4x\right)}{x-2}}
Express \left(x+1\right)\times \frac{12-4x}{x-2} as a single fraction.
\frac{\left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(12-4x\right)}
Divide \left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right) by \frac{\left(x+1\right)\left(12-4x\right)}{x-2} by multiplying \left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right) by the reciprocal of \frac{\left(x+1\right)\left(12-4x\right)}{x-2}.
\frac{\left(x-2\right)\left(x^{3}+2x^{2}+3x+2\right)}{-4x+12}
Cancel out x+1 in both numerator and denominator.
\frac{x^{4}-x^{2}-4x-4}{-4x+12}
Use the distributive property to multiply x-2 by x^{3}+2x^{2}+3x+2 and combine like terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}