Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x^{4}-x^{2}-4x-4}{x-2}\left(x+1\right)}{\left(x+1\right)\times \frac{4^{2}-4x-4}{x-2}}
Divide \frac{\frac{x^{4}-x^{2}-4x-4}{x-2}}{x+1} by \frac{\frac{4^{2}-4x-4}{x-2}}{x+1} by multiplying \frac{\frac{x^{4}-x^{2}-4x-4}{x-2}}{x+1} by the reciprocal of \frac{\frac{4^{2}-4x-4}{x-2}}{x+1}.
\frac{\frac{\left(x-2\right)\left(x+1\right)\left(x^{2}+x+2\right)}{x-2}\left(x+1\right)}{\left(x+1\right)\times \frac{4^{2}-4x-4}{x-2}}
Factor the expressions that are not already factored in \frac{x^{4}-x^{2}-4x-4}{x-2}.
\frac{\left(x+1\right)\left(x^{2}+x+2\right)\left(x+1\right)}{\left(x+1\right)\times \frac{4^{2}-4x-4}{x-2}}
Cancel out x-2 in both numerator and denominator.
\frac{\left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right)}{\left(x+1\right)\times \frac{4^{2}-4x-4}{x-2}}
Expand the expression.
\frac{\left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right)}{\left(x+1\right)\times \frac{16-4x-4}{x-2}}
Calculate 4 to the power of 2 and get 16.
\frac{\left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right)}{\left(x+1\right)\times \frac{12-4x}{x-2}}
Subtract 4 from 16 to get 12.
\frac{\left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right)}{\frac{\left(x+1\right)\left(12-4x\right)}{x-2}}
Express \left(x+1\right)\times \frac{12-4x}{x-2} as a single fraction.
\frac{\left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(12-4x\right)}
Divide \left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right) by \frac{\left(x+1\right)\left(12-4x\right)}{x-2} by multiplying \left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right) by the reciprocal of \frac{\left(x+1\right)\left(12-4x\right)}{x-2}.
\frac{\left(x-2\right)\left(x^{3}+2x^{2}+3x+2\right)}{-4x+12}
Cancel out x+1 in both numerator and denominator.
\frac{x^{4}-x^{2}-4x-4}{-4x+12}
Use the distributive property to multiply x-2 by x^{3}+2x^{2}+3x+2 and combine like terms.
\frac{\frac{x^{4}-x^{2}-4x-4}{x-2}\left(x+1\right)}{\left(x+1\right)\times \frac{4^{2}-4x-4}{x-2}}
Divide \frac{\frac{x^{4}-x^{2}-4x-4}{x-2}}{x+1} by \frac{\frac{4^{2}-4x-4}{x-2}}{x+1} by multiplying \frac{\frac{x^{4}-x^{2}-4x-4}{x-2}}{x+1} by the reciprocal of \frac{\frac{4^{2}-4x-4}{x-2}}{x+1}.
\frac{\frac{\left(x-2\right)\left(x+1\right)\left(x^{2}+x+2\right)}{x-2}\left(x+1\right)}{\left(x+1\right)\times \frac{4^{2}-4x-4}{x-2}}
Factor the expressions that are not already factored in \frac{x^{4}-x^{2}-4x-4}{x-2}.
\frac{\left(x+1\right)\left(x^{2}+x+2\right)\left(x+1\right)}{\left(x+1\right)\times \frac{4^{2}-4x-4}{x-2}}
Cancel out x-2 in both numerator and denominator.
\frac{\left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right)}{\left(x+1\right)\times \frac{4^{2}-4x-4}{x-2}}
Expand the expression.
\frac{\left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right)}{\left(x+1\right)\times \frac{16-4x-4}{x-2}}
Calculate 4 to the power of 2 and get 16.
\frac{\left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right)}{\left(x+1\right)\times \frac{12-4x}{x-2}}
Subtract 4 from 16 to get 12.
\frac{\left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right)}{\frac{\left(x+1\right)\left(12-4x\right)}{x-2}}
Express \left(x+1\right)\times \frac{12-4x}{x-2} as a single fraction.
\frac{\left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(12-4x\right)}
Divide \left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right) by \frac{\left(x+1\right)\left(12-4x\right)}{x-2} by multiplying \left(x^{3}+2x^{2}+3x+2\right)\left(x+1\right) by the reciprocal of \frac{\left(x+1\right)\left(12-4x\right)}{x-2}.
\frac{\left(x-2\right)\left(x^{3}+2x^{2}+3x+2\right)}{-4x+12}
Cancel out x+1 in both numerator and denominator.
\frac{x^{4}-x^{2}-4x-4}{-4x+12}
Use the distributive property to multiply x-2 by x^{3}+2x^{2}+3x+2 and combine like terms.