\frac { ( x ^ { 2 } - 4 ) ( x ^ { 2 } - 25 ) } { ( x + 2 ) ( x + 5 } = 0
Solve for x
x=5
x=2
Graph
Share
Copied to clipboard
\left(x^{2}-4\right)\left(x^{2}-25\right)=0
Variable x cannot be equal to any of the values -5,-2 since division by zero is not defined. Multiply both sides of the equation by \left(x+2\right)\left(x+5\right).
x^{4}-29x^{2}+100=0
Use the distributive property to multiply x^{2}-4 by x^{2}-25 and combine like terms.
t^{2}-29t+100=0
Substitute t for x^{2}.
t=\frac{-\left(-29\right)±\sqrt{\left(-29\right)^{2}-4\times 1\times 100}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -29 for b, and 100 for c in the quadratic formula.
t=\frac{29±21}{2}
Do the calculations.
t=25 t=4
Solve the equation t=\frac{29±21}{2} when ± is plus and when ± is minus.
x=5 x=-5 x=2 x=-2
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
x=2 x=5
Variable x cannot be equal to any of the values -5,-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}