Solve for x
x<\frac{73}{19}
Graph
Share
Copied to clipboard
2\left(x+5\right)>7\left(3x-9\right)
Multiply both sides of the equation by 14, the least common multiple of 7,2. Since 14 is positive, the inequality direction remains the same.
2x+10>7\left(3x-9\right)
Use the distributive property to multiply 2 by x+5.
2x+10>21x-63
Use the distributive property to multiply 7 by 3x-9.
2x+10-21x>-63
Subtract 21x from both sides.
-19x+10>-63
Combine 2x and -21x to get -19x.
-19x>-63-10
Subtract 10 from both sides.
-19x>-73
Subtract 10 from -63 to get -73.
x<\frac{-73}{-19}
Divide both sides by -19. Since -19 is negative, the inequality direction is changed.
x<\frac{73}{19}
Fraction \frac{-73}{-19} can be simplified to \frac{73}{19} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}