Solve for x
x=-\frac{9y^{2}}{4}+\frac{27y}{2}-\frac{53}{4}
Solve for y (complex solution)
y=-\frac{2\sqrt{7-x}}{3}+3
y=\frac{2\sqrt{7-x}}{3}+3
Solve for y
y=-\frac{2\sqrt{7-x}}{3}+3
y=\frac{2\sqrt{7-x}}{3}+3\text{, }x\leq 7
Graph
Share
Copied to clipboard
4\left(x+2\right)+9\left(y-3\right)^{2}=36
Multiply both sides of the equation by 36, the least common multiple of 9,4.
4x+8+9\left(y-3\right)^{2}=36
Use the distributive property to multiply 4 by x+2.
4x+8+9\left(y^{2}-6y+9\right)=36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-3\right)^{2}.
4x+8+9y^{2}-54y+81=36
Use the distributive property to multiply 9 by y^{2}-6y+9.
4x+89+9y^{2}-54y=36
Add 8 and 81 to get 89.
4x+9y^{2}-54y=36-89
Subtract 89 from both sides.
4x+9y^{2}-54y=-53
Subtract 89 from 36 to get -53.
4x-54y=-53-9y^{2}
Subtract 9y^{2} from both sides.
4x=-53-9y^{2}+54y
Add 54y to both sides.
4x=-9y^{2}+54y-53
The equation is in standard form.
\frac{4x}{4}=\frac{-9y^{2}+54y-53}{4}
Divide both sides by 4.
x=\frac{-9y^{2}+54y-53}{4}
Dividing by 4 undoes the multiplication by 4.
x=-\frac{9y^{2}}{4}+\frac{27y}{2}-\frac{53}{4}
Divide -53-9y^{2}+54y by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}